Levodopa treatment in Parkinson's disease has been suggested to contribute to disease progression through free radical generation. We compared the time course of levodopa-induced dopamine metabolism, and the resulting oxidative stress, between rat brain regions with varying dopaminergic innervation. At 1, 4, 8, and 12 h after levodopa administration (100 mg/kg), dopamine, dihydroxyphenylacetic acid, and homovanillic acid were measured in striatum and ventral midbrain, regions containing marked dopaminergic innervation, and in prefrontal cortex and cerebellum, which possess little dopaminergic innervation. Malondialdehyde, a marker of oxidative stress, was measured in additional animals. The return of dopamine and its metabolites to control concentrations tended to be slower (by 3-8 h) in cerebellum and prefrontal cortex than in dopaminergic regions. Malondialdehyde concentrations were decreased (p < 0.05) in ventral midbrain 8 h posttreatment, but increased in cerebellum 12 h posttreatment. We concluded that levodopa increases dopamine metabolism in nondopaminergic as well as dopaminergic regions, with delayed clearance of dopamine and its metabolites in nondopaminergic regions. The slower return of dopamine to control levels in nondopaminergic regions may be relevant to some of the side effects of levodopa. No support was found for the hypothesis that levodopa treatment induces oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0361-9230(98)00140-3 | DOI Listing |
J Neuroimmune Pharmacol
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.
Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA, 90089-0372, USA.
Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.
View Article and Find Full Text PDFPLoS One
January 2025
Radiant Research Services Pvt. Ltd., Bangalore, India.
1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.
View Article and Find Full Text PDFNeurogenetics
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
Huntington's disease (HDs) is a fatal, autosomal dominant, and hereditary neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. HD is well linked to mutation in the HTT gene, which leads to an abnormal expansion of trinucleotide CAG repeats, resulting in the production of the mHTT protein and responsible for abnormally long poly-Q tract. These abnormal proteins disrupt cellular processes, including neuroinflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, ultimately leading to selective neuronal loss in the brain.
View Article and Find Full Text PDFDiabetes Metab
January 2025
Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium. Electronic address:
Background: Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!