Generation of oxygen free radicals by glycated proteins is widely believed to be one of the causes of oxidative stress in diabetes and aging. Metal ion catalysis is regarded as an essential part of the oxidative mechanism. In this work, we also considered an alternative "metal-free" superoxide radical formation by a number of fructose-amino acids (Amadori compounds) derived from glycine and lysine, which represent the simplest models for early glycated proteins. In the superoxide dismutase-dependent cytochrome c assay, 1 mM Chelex-treated aqueous solutions of monofructose-amino acids 4-6 generated 0.9-3.6 x 10(-10) M s-1 O2*- at pH 7. Surprisingly, the rates of superoxide radical formation in the solutions of difructose-amino acids 7-9 were significantly higher (0.75-5.8 x 10(-9) M s-1 O2*-). The percentage of acyclic sugar anomers (

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx980209eDOI Listing

Publication Analysis

Top Keywords

amadori compounds
8
glycated proteins
8
superoxide radical
8
radical formation
8
s-1 o2*-
8
superoxide
4
superoxide free
4
free radical
4
radical generation
4
generation amadori
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!