The Wobbler mouse is a useful small animal model for the study of human motoneuron diseases. Besides showing the loss of motoneurons when the symptoms are expressed around the age of 3 weeks, we have also demonstrated the presumed 'sprouting' of neuronal processes in the cervical spinal ventral horn which contain immunoreactive (IR) serotonin (5-HT), substance P (SP) and methionine and leucine enkephalins (ME, LE), as well as thyrotropin-releasing hormone (TRH). This occurs during the symptomatic period when IR-5-HT, ME and LE sprout at Stage 1, around the age of 3 weeks, whereas IR-SP sprouts only at a late stage (stage 4) of the disease (at age 3 months). The present investigation shows that the presumed sprouting occurs even before the appearance of symptoms and prior to significant motoneuron losses. IR-5-HT containing neuronal processes sprout by postnatal day 7, whereas IR-SP, -ME, -LE, and -TRH processes sprout by day 14. Hypothetically the early sprouts may contribute to the loss of motoneurons. They also respond to ciliary and brain derives neurotrophic factors cotreatment. IR-SP neuronal processes, although they sprout by day 14, show normal fiber density by the time symptoms appear (stage 1, age 21 days). However the SP sprouting is biphasic and a significant increase in number also occurs at an advanced stage of the disease (stage 4, age 3 months).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3940(98)00959-8 | DOI Listing |
Zool Res
January 2025
Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong 266071, China. E-mail:
Substantial evidence points to the early onset of peripheral inflammation in the development of Parkinson's disease (PD), supporting the "body-first" hypothesis. However, there remains a notable absence of PD-specific animal models induced by inflammatory cytokines. This study introduces a novel mouse model of PD driven by the proinflammatory cytokine CXCL1, identified in our previous research.
View Article and Find Full Text PDFZool Res
January 2025
BGI Research, Hangzhou, Zhejiang 310030, China.
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFFront Comput Neurosci
January 2025
Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
Front Cell Dev Biol
January 2025
Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!