Magnetic circular dichroism (MCD) and absorption spectra have been measured on three intact photosynthetic pigments with the chlorin ring as macrocycle: chlorophyll a, bacteriochlorophyll c and d, in various hydrophilic organic solvents. The MCD intensity of a Qy(0-0) transition for the Mg chlorin derivative was sensitive to the coordination state of the central Mg atom by the solvent molecules. The coordination number has been characterized in terms of the relationship between the ratio of Qy(0-0) MCD intensity to its dipole strength (B/D) and the difference in energies of Qx(0-0) and Qy(0-0) transitions. This relationship depends not only on the coordination number of the magnesium (Mg) atom but also on the coordination interaction of the solvent molecules to the Mg atom, and can clarify the spectroscopic change of chlorosomes by alcohol treatment. We propose that the correlation between the MCD intensity of Qy(0-0) transition and the energy difference can be used as a new measure for determining the coordination number of the Mg atom and for estimating the interaction strength of the Mg atom with solvent molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2728(98)00170-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!