The analysis of mRNA turnover often requires a knowledge of the pathway by which a particular mRNA is being degraded. In this article we describe experimental procedures that can be used to determine the mechanism of degradation for yeast transcripts. These approaches include the insertion of strong secondary structures to block exonuclease cleavage and thereby trap decay intermediates. In addition, mRNA decay pathways can be analyzed by using regulatable promoters to perform transcriptional pulse-chase experiments, thereby allowing the determination of precursor-product relationships during the mRNA decay process. Finally, the mechanism of mRNA degradation can also now be determined by using trans-acting mutations specific for distinct mRNA turnover pathways. Most importantly, the combination of these three approaches can often clearly define the mechanism(s) by which a given transcript is degraded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/meth.1998.0701 | DOI Listing |
Chin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
January 2025
Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing.
View Article and Find Full Text PDFVirology
December 2024
The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China. Electronic address:
The knowledge on the life cycle of flaviviruses is still incomplete, and no direct-acting antivirals against their infections are clinically available. Herein, by screening via a Zika virus (ZIKV) replicon assay, we found that the N-terminus of NS2A exhibited great tolerance to the insertions of different split fluorescent proteins (split-FPs). Furthermore, both ZIKV and dengue virus encoding a split-FP-tagged NS2A propagated efficiently, and the split-FP-tagged ZIKVs had good genetic stability.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Kunshan First People's Hospital Joint Surgery Department, 566 Qianjin East Road, Kunshan City, Suzhou, Jiangsu Province, 215399, China.
Background: Interactions between RNA-binding proteins and RNA regulate RNA transcription during osteoporosis. Ferroptosis, a programmed cell death caused by iron metabolism, plays a vital role in osteoporosis. However, the mechanisms by which RNA-binding proteins are involved in ferroptosis during osteoporosis remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!