The MDMX gene product is related to the MDM2 oncoprotein, both of which interact with the p53 tumor suppressor. We have identified a novel transcript of the MDMX gene that is expressed in a variety of cell lines, and in particular, in growing and transformed cells. This transcript is identical to the published sequence yet it has a short internal deletion of 68 base pairs. This deletion produces a shift in the reading frame after codon 114, resulting in the inclusion of a stop codon at amino acid residue 127 (full-length MDMX is 489 residues). This truncated MDMX protein is termed MDMX-S ("short form"), represents only the p53-binding domain, and appears to bind p53 better than full-length MDMX. The MDMX-S protein can be detected in cell extracts and when overexpressed is much more effective than MDMX at inhibiting p53-mediated transcriptional activation and induction of apoptosis. Since MDMX-S lacks the central and carboxyl-terminal regions contained within full-length MDMX, it is likely to play a key role in the regulation of cell proliferation and apoptosis in a way distinct from MDMX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.12.8299 | DOI Listing |
Bioorg Med Chem
November 2024
Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1, 06123 Perugia, Italy. Electronic address:
In recent years, the restoration of p53 physiological functions has become an attractive therapeutic approach to develop novel and efficacious cancer therapies. Among other mechanisms, the oncosuppressor protein p53 is functionally regulated by MDM2 through its E3 ligase function. MDM2 promotes p53 ubiquitination and degradation following homodimerization or heterodimerization with MDM4.
View Article and Find Full Text PDFOncogene
June 2020
Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, D-37077, Göttingen, Germany.
The Mdm4 (alias MdmX) oncoprotein, like its paralogue and interaction partner Mdm2, antagonizes the tumor suppressor p53. p53-independent roles of the Mdm proteins are emerging, and we have reported the ability of Mdm2 to modify chromatin and to support DNA replication by suppressing the formation of R-loops (DNA/RNA-hybrids). We show here that the depletion of Mdm4 in p53-deficient cells compromises DNA replication fork progression as well.
View Article and Find Full Text PDFInt J Mol Sci
February 2020
Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
Dysfunction of the tumor suppressor p53 occurs in most human cancers. Mdm2 and MdmX are homologous proteins from the Mdm (Murine Double Minute) protein family, which play a critical role in p53 inactivation and degradation. The two proteins interact with one another via the intrinsic RING (Really Interesting New Gene) domains to achieve the negative regulation of p53.
View Article and Find Full Text PDFCell Cycle
December 2015
a Cibles Thérapeutiques, Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162; Institut de Génétique Moléculaire , Université Paris 7 ; Hôpital St. Louis; Paris, France.
Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMX(p60), which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMX(FL) at position +384. hMDMX(p60) lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMX(FL).
View Article and Find Full Text PDFExp Cell Res
January 2015
REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto, Portugal. Electronic address:
In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!