The signaling pathways by which cell volume regulates ion transporters, e.g. Na+/H+ exchangers (NHEs), and affects cytoskeletal organization are poorly understood. We have previously shown that shrinkage induces tyrosine phosphorylation in CHO cells, predominantly in an 85-kDa band. To identify volume-sensitive kinases and their substrates, we investigated the effect of hypertonicity on members of the Src kinase family. Hyperosmolarity stimulated Fyn and inhibited Src. Fyn activation was also observed in nystatin-permeabilized cells, where shrinkage cannot induce intracellular alkalinization. In contrast, osmotic inhibition of Src was prevented by permeabilization or by inhibiting NHE-1. PP1, a selective Src family inhibitor, strongly reduced the hypertonicity-induced tyrosine phosphorylation. We identified one of the major targets of the osmotic stress-elicited phosphorylation as cortactin, an 85-kDa actin-binding protein and well known Src family substrate. Cortactin phosphorylation was triggered by shrinkage and not by changes in osmolarity or pHi and was abrogated by PP1. Hyperosmotic cortactin phosphorylation was reduced in Fyn-deficient fibroblasts but remained intact in Src-deficient fibroblasts. To address the potential role of the Src family in the osmotic regulation of NHEs, we used PP1. The drug affected neither the hyperosmotic stimulation of NHE-1 nor the inhibition of NHE-3. Thus, members of the Src family are volume-sensitive enzymes that may participate in the shrinkage-related reorganization of the cytoskeleton but are probably not responsible for the osmotic regulation of NHE.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.12.8093DOI Listing

Publication Analysis

Top Keywords

src family
16
tyrosine phosphorylation
12
osmotic regulation
12
src
8
induces tyrosine
8
phosphorylation cortactin
8
na+/h+ exchangers
8
members src
8
cortactin phosphorylation
8
phosphorylation
6

Similar Publications

Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.

View Article and Find Full Text PDF

Background: Lyn kinase, a member of the Src family of tyrosine kinases, predominantly phosphorylates ITIM and ITAM motifs linked to immune receptors and adaptor proteins, and is emerging as a target for Alzheimer's disease (AD). The role of Lyn in TREM2-mediated microglial activation and phagocytosis, a critical pathway for clearing Aβ plaques, remains unclear and potent, selective, and brain penetrant Lyn inhibitors are unavailable. In this study, we report the characterization of Lyn kinase inhibitors from the literature as well as the establishment of an advanced virtual screening platform at the IUSM-Purdue-TREAT-AD center to identify new type II Lyn inhibitors suitable as molecular probes.

View Article and Find Full Text PDF

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC), a prevalent form of primary liver malignancy, arises from liver-specific hepatocytes. Buch.-Ham(Climbing senecio) is a bitter-tasting plant of the Compositae family with anti-tumor properties.

View Article and Find Full Text PDF

Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!