Plants must adapt to a capricious light environment, but the mechanism by which light signals are transmitted to cause changes in development has long eluded us. The search might be over, however, as two photoreceptors, phytochrome and NPH1, have been shown to autophosphorylate in a light-dependent fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(99)80078-5DOI Listing

Publication Analysis

Top Keywords

light receptor
4
receptor kinases
4
kinases plants!
4
plants! plants
4
plants adapt
4
adapt capricious
4
capricious light
4
light environment
4
environment mechanism
4
mechanism light
4

Similar Publications

Toxicodynamic insights of 2C and NBOMe drugs - Is there abuse potential?

Toxicol Rep

June 2025

Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.

Drug use represents a prevalent and multifaceted societal problem, with profound implications for public health, social welfare, and economic stability. To circumvent strict international drug control regulations, there is a growing trend in the development and market introduction of novel psychoactive substances (NPS), encompassing a wide range of compounds with psychoactive properties. This includes, among other classes of drugs, the phenethylamines.

View Article and Find Full Text PDF

Objectives: Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of infants, predominantly in female and preterm neonates. Propranolol is the mainstay of treatment for IH. Given the short half-life of propranolol regarding β-adrenergic receptor inhibition as well as its side effects, propranolol is administered to infants 2-3 times daily with 1 mg/kg/dose.

View Article and Find Full Text PDF

5HTR is a G-protein-coupled receptor that drives many neuronal functions and is a target for psychedelic drugs. Understanding ligand interactions and conformational transitions is essential for developing effective pharmaceuticals, but mechanistic details of 5HTR activation remain poorly understood. We utilized all-atom molecular dynamics simulations and free-energy calculations to investigate 5HTR's conformational dynamics upon binding to serotonin and psilocin.

View Article and Find Full Text PDF

Melatonin, modulation of hypothalamic activity, and reproduction.

Vitam Horm

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. Electronic address:

Light is the most reliable environmental cue allowing animals to breed successfully when conditions are optimal. In seasonal breeders, photoperiod (length of daylight) information is sensed by the eyes and transmitted to the suprachiasmatic nucleus, the master clock region located in the hypothalamus. This structure has a 24-h firing rhythm involving a cycle of clock protein synthesis and degradation, and provides the timing to synchronize the synthesis and release of melatonin, the chemical signal that transduces the photoperiod information.

View Article and Find Full Text PDF

Integrated spaceflight transcriptomic analyses and simulated space experiments reveal key molecular features and functional changes driven by space stressors in space-flown C. elegans.

Life Sci Space Res (Amst)

February 2025

Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, PR China.

The space environment presents unique stressors, such as microgravity and space radiation, which can induce molecular and physiological changes in living organisms. To identify key reproducible transcriptomic features and explore potential biological roles in space-flown C. elegans, we integrated transcriptomic data from C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!