Unlabelled: Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was induced with i.v. etomidate 0.3 mg/kg and sufentanil 1.5 microg/kg and was maintained with sufentanil 0.5 microg x kg(-1) x h(-1) and N2O 50% in oxygen. Muscle relaxation was kept at 25% of control with i.v. vecuronium. Electrical stimulation was accomplished with a transcranial stimulator set at maximal output (1200 V). Magnetic transcranial stimulation was accomplished with a transcranial stimulator set at maximal output (2 T). Just before skin incision, triplicate responses to single stimuli with both modes of cortical stimulation were randomly recorded from the tibialis anterior muscles. Amplitudes and latencies were compared using the Wilcoxon signed rank test. Bilateral tc-MEP responses were obtained in every patient with electrical stimulation. Magnetic stimulation evoked only unilateral responses in two patients. With electrical stimulation, the median tc-MEP amplitude was 401 microV (range 145-1145 microV), and latency was 32.8 +/- 2.3 ms. With magnetic stimulation, the tc-MEP amplitude was 287 microV (range 64-506 microV) (P < 0.05), and the latency was 34.7 +/- 2.1 ms (P < 0.05). We conclude that myogenic responses to magnetic transcranial stimulation are more sensitive to anesthetic-induced motoneural depression compared with those elicited by electrical transcranial stimulation.

Implications: Transcranial motor evoked potentials are used to monitor spinal cord integrity intraoperatively. We compared the relative efficacy of electrical and magnetic transcranial stimuli in anesthetized patients. It seems that myogenic responses to magnetic transcranial stimulation are more sensitive to anesthetic-induced motoneural depression compared with electrical transcranial stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000539-199903000-00019DOI Listing

Publication Analysis

Top Keywords

magnetic transcranial
24
transcranial stimulation
20
motor evoked
16
electrical magnetic
12
transcranial
12
electrical stimulation
12
stimulation
11
myogenic motor
8
evoked responses
8
electrical
8

Similar Publications

Pudendal Neuralgia: A Review of the Current Literature.

Curr Pain Headache Rep

January 2025

Department of Anesthesia, Division of Pain Medicine, University of Virginia, Charlottesville, VA, USA.

Purpose Of Review: This paper aims to review pudendal neuralgia pathophysiology, risk factors, diagnosis, and treatment options.

Recent Findings: Conservative and pharmacologic options are first line treatments for the treatment of pudendal neuralgia. Interventional treatment such as, pudendal nerve blocks can be tried if first line treatments feel to provide adequate analgesia.

View Article and Find Full Text PDF

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

How the prefrontal cortex contributes to working memory remains controversial, as theories differ in their emphasis on its role in storing memories versus controlling their content. To adjudicate between these competing ideas, we tested how perturbations to the human (both sexes) lateral prefrontal cortex impact the storage and control aspects of working memory during a task that requires human subjects to allocate resources to memory items based on their behavioral priority. Our computational model made a strong prediction that disruption of this control process would counterintuitively improve memory for low-priority items.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has the potential to yield insights into cortical functions and improve the treatment of neurological and psychiatric conditions. However, its reliability is hindered by a low reproducibility of results. Among other factors, such low reproducibility is due to structural and functional variability between individual brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!