It has been reported that, unlike high-fat diets, high-sucrose diets cause insulin resistance in the absence of an increase in visceral fat and that the insulin resistance develops only in male rats. This study was done to 1) determine if isolated muscles of rats fed a high-sucrose diet are resistant to stimulation of glucose transport when studied in vitro and 2) obtain information regarding how the effects of high-sucrose and high-fat diets on muscle insulin resistance differ. We found that, compared with rat chow, semipurified high-sucrose and high-starch diets both caused increased visceral fat accumulation and insulin resistance of skeletal muscle glucose transport. Insulin responsiveness of 2-deoxyglucose (2-DG) transport measured in epitrochlearis and soleus muscles in vitro was decreased approximately 40% (P < 0.01) in both male and female rats fed a high-sucrose compared with a chow diet. The high-sucrose diet also caused resistance of muscle glucose transport to stimulation by contractions. There was a highly significant negative correlation between stimulated muscle 2-DG transport and visceral fat mass. In view of these results, the differences in insulin action in vivo observed by others in rats fed isocaloric high-sucrose and high-starch diets must be due to additional, specific effects of sucrose that do not carry over in muscles studied in vitro. We conclude that, compared with rat chow, semipurified high-sucrose and high-cornstarch diets, like high-fat diets, cause increased visceral fat accumulation and severe resistance of skeletal muscle glucose transport to stimulation by insulin and contractions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.1999.276.3.R665 | DOI Listing |
Adv Skin Wound Care
January 2025
At University of Texas Southwestern Medical Center, Dallas, Texas, United States, Yi-Ting Tzen, PhD, is Assistant Professor, Department of Applied Clinical Research, Department of Physical Medicine and Rehabilitation, and Department of Orthopaedic Surgery; Wei-Han Tan, MD, is Assistant Professor, VA North Texas Health Care System, Dallas, and Department of Physical Medicine and Rehabilitation; Patricia T. Champagne, PhD, is Postdoctoral Fellow, Department of Applied Clinical Research and Department of Physical Medicine and Rehabilitation; Jijia Wang, PhD, is Assistant Professor, Department of Applied Clinical Research; and Merrine Klakeel, DO, is Assistant Professor, Department of Physical Medicine and Rehabilitation. Kath M. Bogie, DPhil, is Professor, Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, United States, and VA Northeast Ohio Healthcare System, Cleveland. Timothy J. Koh, PhD, is Professor, Department of Kinesiology and Nutrition, University of Illinois at Chicago, Illinois, United States.
Objective: To identify markers associated with pressure injury (PrI) history in individuals with spinal cord injury (SCI) using two approaches: skin blood flow (SBF) response toward localized heating, and serum marker for insulin resistance.
Methods: For this cross-sectional, observational study of adults with chronic traumatic SCI at T12 and above, researchers recruited two groups of participants: with history of PrI (group 1), and without history of PrI (group 2). The study protocol included obtaining fasting blood samples and measurement of SBF at bilateral heels with localized heating of 42 °C for 30 minutes from all participants.
Diabetes
January 2025
Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China.
Insulin resistance, a hallmark of type 2 diabetes, accelerates muscle breakdown and impairs energy metabolism. However, the role of Ubiquitin Specific Peptidase 2 (USP2), a key regulator of insulin resistance, in sarcopenia remains unclear. Peroxisome proliferator activated receptor γ (PPARγ) plays a critical role in regulating muscle atrophy.
View Article and Find Full Text PDFPLoS Biol
January 2025
Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
Objective: To evaluate the effects of a combination of carnitines, L-arginine, L-cysteine and myo-inositol on metabolic and reproductive parameters in PCOS overweight/obese patients.
Methods: This was a retrospective study analyzing information of a group of PCOS ( = 25) overweight/obesity patients, not requiring hormonal treatment, selected from the database of the ambulatory clinic of the Gynecological Endocrinology Center at the University of Modena and Reggio Emilia, Modena, Italy. The hormonal profile, routine exams and insulin and C-peptide response to oral glucose tolerance test (OGTT) were evaluated before and after 12 weeks of a daily oral complementary treatment with L-carnitine (500 mg), acetyl-L-carnitine (250 mg), L-arginine (500 mg), L-cysteine (100 mg) and myo-inositol (1 gr).
Diabetes Care
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA.
Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).
Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!