Two sets of primers derived from the 5'-terminal region and the NS5 region of the hepatitis G virus (HGV) genome were used to amplify PCR fragments from serum specimens obtained from different parts of the world. All PCR fragments from the 5'-terminal region (5'-PCR, n = 56) and from the NS5 region (NS5-PCR, n = 85) were sequenced and compared to corresponding published HGV sequences. The range of nucleotide sequence similarity varied from 74 and 78% to 100% for 5'-PCR and NS5-PCR fragments, respectively. Additionally, five overlapping PCR fragments comprising an approximately 2.0-kb structural region of the HGV genome were sequenced from each of five sera obtained from three United States residents. These sequences were compared to 20 published sequences comprising the same region of the HGV genome. Nucleotide and deduced amino acid sequences obtained from different individuals were homologous from 82.9 to 93. 6% and from 90.4 to 99.0%, respectively. Sequences obtained from follow-up specimens were almost identical. Comparative analysis of deduced amino acid sequences of the HGV structural proteins and hepatitis C virus (HCV) structural proteins combined with an analysis of predicted secondary structures and hydrophobic profiles allowed prediction of processing sites within the HGV structural proteins. A phylogenetic sequence analysis performed on the 2.0-kb structural region supports the existence of three previously identified HGV genetic groups. However, phylogenetic analysis performed on only small DNA fragments yielded inconsistent genetic grouping and failed to confirm the existence of genetic groups. Thus, in contrast to HCV where almost any region can be used for genotyping, only large or carefully selected genome fragments can be used to identify consistent HGV genetic groups.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1998.9592DOI Listing

Publication Analysis

Top Keywords

hepatitis virus
12
hgv genome
12
pcr fragments
12
structural proteins
12
genetic groups
12
region
8
5'-terminal region
8
ns5 region
8
hgv
8
20-kb structural
8

Similar Publications

Liver Enzyme Elevation After Hepatitis C Virus Cure: Is There a Sex Effect? (ANRS CO13 HEPAVIH Cohort).

J Viral Hepat

March 2025

Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, Marseille, France.

View Article and Find Full Text PDF

Current guidelines to prevent hepatocellular carcinoma (HCC) by chronic hepatitis B virus (HBV) infection are based on risk assessments that include age, sex, and virological and biochemical parameters. The study aim was to investigate the impact of predictive markers on long-term outcomes. The clinical outcomes of 100 patients with chronic hepatitis B were investigated 30 years after a baseline assessment that included liver biopsy.

View Article and Find Full Text PDF

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.

View Article and Find Full Text PDF

Sofosbuvir/velpatasvir/voxilaprevir is recommended for hepatitis C virus (HCV) retreatment in those who fail initial treatment but is unavailable in resource-limited settings. We describe a government sofosbuvir/velpatasvir + ribavirin (SOF/VEL + RBV) × 24 weeks retreatment program in Rwanda (November 2021-October 2022). Of 231 participants, 174 were cured (75.

View Article and Find Full Text PDF

Identification of near full-length human pegivirus type 2 (HPgV-2) genomes in blood donor samples co-infected with hepatitis C virus (HCV).

Microbiol Resour Announc

January 2025

Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.

Human pegivirus (HPgV) identified from an HCV-infected plasma sample through nanopore metagenomics. The analysis revealed a nearly complete HPgV-2 genome. Phylogenetic analysis confirmed its classification within the HPgV-2 genotype, providing insights into viral co-infection dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!