Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00003072-199903000-00017 | DOI Listing |
Molecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).
View Article and Find Full Text PDFJ Radiol Prot
January 2025
The University of Manchester, Manchester, M13 9PL, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Epidemiological studies of nuclear industry workers are of substantial importance to understanding the risk of cancer consequent to low-level exposure to radiation, and these studies should provide vital evidence for the construction of the international system of radiological protection. Recent studies involve large numbers of workers and include health outcomes for workers who accumulated moderate (and even high) doses over prolonged periods while employed during the earlier years of the nuclear industry. The interpretation of the findings of these recent studies has proved to be disappointingly difficult.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Purpose: Recent clinical advances with the approval of antibody-drug conjugates targeting Trop-2 such as sacituzumab-govitecan and datopotomab-deruxtecan have garnered tremendous interest for their therapeutic efficacy in numerous tumor types including breast and lung cancers. ImmunoPET can stratify tumor avidity, clarifying patient eligibility for ADC therapy as well as a diagnostic companion during therapy. Slow antibody circulation requires days to reach optimal imaging timepoints.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Lab of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai, P. R. China.
Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous HO and O. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiO-PEG) can generate reactive oxygen species in an excitation-free and HO- and O-independent manner. Upon exposure to the tumor microenvironment, NaBiO-PEG undergoes continuous H-accelerated hydrolysis with •OH and O generation through electron transfer-mediated Bi-to-Bi conversion and lattice oxygen transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!