Ct and advanced computer-aided design techniques offer the means for designing customised femoral stems. Our aim was to determine the Hounsfield (HU) value of the bone at the corticocancellous interface, as part of the criteria for the design algorithm. We obtained transverse CT images from eight human cadaver femora. The proximal femoral canal was rasped until contact with dense cortical bone was achieved. The femora were cut into several sections corresponding to the slice positions of the CT images. After obtaining a computerised image of the anatomical sections using a scanner, the inner cortical contour was outlined and transferred to the corresponding CT image. The pixels beneath this contour represent the CT density of the bone remaining after surgical rasping. Contours were generated automatically at nine HU levels from 300 to 1100 and the mean distance between the transferred contour and each of the HU-generated contours was computed. The contour generated along the 600-HU pixels was closest to the inner cortical contour of the rasped femur and therefore 600 HU seem to be the CT density of the corticocancellous interface in the proximal part of cadaver femora. Generally, femoral bone with a CT density beyond 600 HU is not removable by conventional reamers. Thus, we recommend the 600 HU threshold as one of several criteria for the design of custom femoral implants from CT data.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!