Stat5b gene disruption leads to an apparent growth hormone (GH) pulse insensitivity associated with loss of male-characteristic body growth rates and male-specific liver gene expression (Udy, G. B., Towers, R. P., Snell, R. G., Wilkins, R. J., Park, S. H., Ram, P. A., Waxman, D. J., and Davey, H. W. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7239-7244). In the present study, disruption of the mouse Stat5a gene, whose coding sequence is approximately 90% identical to the Stat5b gene, resulted in no loss of expression in male mice of several sex-dependent, GH-regulated liver cytochrome P450 (CYP) enzymes. By contrast, the loss of STAT5b feminized the livers of males by decreasing expression of male-specific CYPs (CYP2D9 and testosterone 16alpha-hydroxylase) while increasing to female levels several female-predominant liver CYPs (CYP3A, CYP2B, and testosterone 6beta-hydroxylase). Since STAT5a is thus nonessential for these male GH responses, STAT5b homodimers, but not STAT5a-STAT5b heterodimers, probably mediate the sexually dimorphic effects of male GH pulses on liver CYP expression. In female mice, however, disruption of either Stat5a or Stat5b led to striking decreases in several liver CYP-catalyzed testosterone hydroxylase activities. Stat5a or Stat5b gene disruption also led to the loss of a female-specific, GH-regulated hepatic CYP2B enzyme. STAT5a, which is much less abundant in liver than STAT5b, and STAT5b are therefore both required for constitutive expression in female but not male mouse liver of certain GH-regulated CYP steroid hydroxylases, suggesting that STAT5 protein heterodimerization is an important determinant of the sex-dependent and gene-specific effects that GH has on the liver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.11.7421 | DOI Listing |
Eur J Med Chem
December 2024
INSERM UMR 1100 CEPR, Research Center for Respiratory Diseases, Team 2 "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", 10 Boulevard Tonnellé, 37032, Tours, France. Electronic address:
Signal Transdcer and Activator of Transcription 5A and 5B (STAT5A/5B) are key effectors of tyrosine kinase oncogenes in myeloid leukemias. It is now clearly evidenced that inhibition of STAT5A/5B not only blocks the growth and survival of myeloid leukemia cells but also overcomes the resistance of leukemic cells to chemotherapy. Previous screening experiments allowed us to identify 17f as a lead compound with promising antileukemic activity that blocks the phosphorylation and transcriptional activity of STAT5A/5B in myeloid leukemia cells addicted to these proteins.
View Article and Find Full Text PDFHemasphere
December 2024
Unit of Functional Cancer Genomics, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna Austria.
The transcription factors STAT3, STAT5A, and STAT5B steer hematopoiesis and immunity, but their enhanced expression and activation promote acute myeloid leukemia (AML) or natural killer/T cell lymphoma (NKCL). Current therapeutic strategies focus on blocking upstream tyrosine kinases to inhibit STAT3/5, but these kinase blockers are not selective against STAT3/5 activation and frequent resistance causes relapse, emphasizing the need for targeted drugs. We evaluated the efficacy of JPX-0700 and JPX-0750 as dual STAT3/5 binding inhibitors promoting protein degradation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China.
Scand J Immunol
January 2025
Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
Relapsing-remitting multiple sclerosis is associated with changes in Jak/STAT pathways in immune cells, but the influence of disease-modifying drugs on these pathways is poorly understood. The aim of this study was to evaluate the impact of first-line disease-modifying drugs used in treatment of RRMS on expression of the STAT pathway and T-cell-related genes in the blood and on serum concentrations of sgp130 and TGF-β1 in women, as well as on the level of phosphorylated STAT3 and STAT5 proteins in T cells of untreated patients and heathy controls. Expression of STAT1, STAT3, STAT5A, STAT5B, SOCS1, SOCS3, FOXP3, IKZF2, RORC and ICOS genes in the blood of untreated RRMS patients, in the blood of patients treated with interferon-β, glatiramer acetate, dimethyl fumarate or teriflunomide and in the blood of healthy controls was evaluated using droplet digital PCR.
View Article and Find Full Text PDFDiscov Oncol
November 2024
Department of Comprehensive Oncology, Affiliated Hospital of Shandong Second Medical University, Kuiwen District, No.2428, Yuhe Road, Weifang, 261041, China.
Objective: To elucidate the efficacy of Ginsenoside Rg3 on the reproduction and immigration of HCT-116 cells and its molecular mechanism.
Methods: Analysis of the cell cycle along with the colony formation assay, and MTT test were performed to detect the effect of Ginsenoside Rg3 (GRg3) on proliferation of HCT-116 cells. Transwell assay and Cell scratch wound method were carried out to determine the impact on the immigration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!