The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells.

J Biol Chem

Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain.

Published: March 1999

The androgen-independent human prostate adenocarcinoma cell line DU-145 proliferates in serum-free medium and produces insulin-like growth factors (IGF)-I, IGF-II, and the IGF type-1 receptor (IGF-1R). They also secrete three IGF-binding proteins (IGFBP), IGFBP-2, -3, and -4. Of these, immunoblot analysis revealed selective proteolysis of IGFBP-3, yielding fragments of 31 and 19 kDa. By using an anti-IGF-I-specific monoclonal antibody (mAb), we detect surface receptor-bound IGF-I on serum-starved DU-145 cells, which activates IGF-1R and triggers a mitogenic signal. Incubation of DU-145 cells with blocking anti-IGF-I, anti-IGF-II, or anti-IGF-I plus anti-IGF-II mAb does not, however, inhibit serum-free growth of DU-145. Conversely, anti-IGF-1R mAb and IGFBP-3 inhibit DNA synthesis. IGFBP-3 also modifies the DU-145 cell cycle, decreases p34(cdc2) levels, and IGF-1R autophosphorylation. The antiproliferative IGFBP-3 activity is not IGF-independent, since des-(1-3)IGF-I, which does not bind to IGFBP-3, reverses its inhibitory effect. DU-145 also secretes the matrix metalloproteinase (MMP)-9, which can be detected in both a soluble and a membrane-bound form. Matrix metalloproteinase inhibitors, but not serpins, abrogate DNA synthesis in DU-145 associated with the blocking of IGFBP-3 proteolysis. Overexpression of an antisense cDNA for MMP-9 inhibits 80% of DU-145 cell proliferation that can be reversed by IGF-I in a dose-dependent manner. Inhibition of MMP-9 expression is also associated with a decrease in IGFBP-3 proteolysis and with reduced signaling through the IGF-1R. Our data indicate an IGF autocrine loop operating in DU-145 cells, specifically modulated by IGFBP-3, whose activity may in turn be regulated by IGFBP-3 proteases such as MMP-9.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.11.6935DOI Listing

Publication Analysis

Top Keywords

du-145 cells
12
du-145
10
igfbp-3
9
insulin-like growth
8
anti-igf-i anti-igf-ii
8
dna synthesis
8
du-145 cell
8
igfbp-3 activity
8
matrix metalloproteinase
8
igfbp-3 proteolysis
8

Similar Publications

Docetaxel (DTX) is the preferred chemotherapeutic drug for prostate cancer (Pca), but the emergence of resistance has significantly reduced its efficacy. Polyphyllin VII (PPVII), a small molecule natural product derived from the traditional herb Paris polyphylla, has shown anticancer potential. This study aims to investigate the effects and mechanisms of PPVII combined with DTX in treating Pca.

View Article and Find Full Text PDF

Pharmacological Properties of Extracts-A Plant Used to Treat and Manage Elephantiasis.

Int J Mol Sci

January 2025

Infectious Diseases and Medicinal Plants Research Niche Area, Botany Department, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa.

(Thunb.) Less. has recently become a plant species of interest to researchers due to its biological activities and less toxic effects.

View Article and Find Full Text PDF

Effect of Propolis on PPP2R1A and Apoptosis in Cancer Cells.

Biochem Res Int

January 2025

Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir, Türkiye.

Recently, it has been shown that protein phosphatase 2A (PP2A) dysfunction was common in many cancer types and was mediated by various inactivation mechanisms. Although many research studies observed antitumor effect of propolis extracts in various types of cancer, the mechanism of effect are still obscure. In this study, we investigated the effect of propolis on PPP2R1A expression and its relationship with apoptosis in the SW-620 (colorectal cancer), DU-145 and PC-3 (prostate cancer), and MCF-7 (breast cancer) cell lines, with WI-38 (healthy fibroblast) cells serving as the control.

View Article and Find Full Text PDF

Signaling crosstalk of Galectin-3, β-catenin, and estrogen receptor in androgen-independent prostate cancer DU-145 cells.

J Steroid Biochem Mol Biol

January 2025

Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04039-032, Brazil. Electronic address:

The aims of this study were to investigate the localization of non-phosphorylated β‑catenin and Galectin-3 (GAL-3), the regulation of the expression of both proteins by activation of estrogen receptors (ERs) and their role in tumorigenic characteristics of androgen-independent prostate cancer DU-145 cells. DU-145 cells were cultured in the absence (control), and presence of 17β-estradiol (E2). Cells were also untreated or pre-treated with the inhibitor of GAL‑3, VA03, or with a compound that disrupts the complex β-catenin-TCF/LEF transcription factor, PKF 118-310.

View Article and Find Full Text PDF

Background: Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!