Plasma semicarbazide-sensitive amine oxidase is raised in patients with Type I (insulin-dependent) diabetes mellitus. It has been suggested that this enzyme is involved in the development of microvascular damage through its ability to convert amines (e.g. methylamine and aminoacetone) into aldehydes, hydrogen peroxide and ammonia. Plasma semicarbazide-sensitive amine oxidase was found to be equally raised both in patients with Type I diabetes (n = 73) and Type II (non-insulin-dependent) diabetes mellitus (n = 88) compared with control subjects (621 +/- 209 and 619 +/- 202 vs 352 +/- 102 mU/l, p < 0.0001) and to correlate in multiple regression analysis with HbA1c. Since the enzyme could protect the islets from the inhibitory effects of methylamine on insulin secretion, we also tested sera of 100 children, collected consecutively at first diagnosis of Type I diabetes, for semicarbazide-sensitive amine oxidase. The activity was greatly increased compared with serum values of 76 control (siblings) children (757 +/- 300 vs 455 +/- 138 mU/l, p < 0.0001), but not associated with HbA1c. Our study confirms the increase of plasma semicarbazide-sensitive amine oxidase in Type I diabetes and extends this finding to Type II diabetes as well as to childhood Type I at first clinical diagnosis. In the last case increased enzyme activities could serve to protect the islets from inhibitory effects of methylamine but cause damage by generation of hydrogen peroxide, aldehydes and ammonia. In the long run the increased enzyme activities could also contribute to vascular damage by direct cytotoxic action on endothelial cells, including increased oxidative stress and glycosylation of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s001250051143DOI Listing

Publication Analysis

Top Keywords

semicarbazide-sensitive amine
20
amine oxidase
20
type diabetes
20
diabetes mellitus
12
plasma semicarbazide-sensitive
12
type
10
oxidase raised
8
type insulin-dependent
8
type non-insulin-dependent
8
diabetes
8

Similar Publications

Introduction: Monoiodoacetate (MIA)-induced osteoarthritis (OA) is the most commonly used rodent model for testing anti-OA drug candidates. Herein, we investigated the effects of our patented multitarget drug candidate SZV-1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl) propanal oxime) that is currently under clinical development for neuropathic pain and characterized the mouse model through complex functional, imaging, and morphological techniques.

Methods: Knee OA was induced by intraarticular MIA injection (0.

View Article and Find Full Text PDF

Background/aim: Inflammatory bowel diseases and colorectal cancer are a major cause of morbidity and mortality. Amine oxidase, copper-containing 3 (AOC3) is a critical enzyme in the physiological trafficking of leukocytes and the regulation of inflammation. This study aimed to examine the effects of Aoc3 deficiency in mice models of colitis and colorectal tumorigenesis.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that inhibition of mitochondrial monoamine oxidases could improve some functional and biohumoral markers of the pathology.

View Article and Find Full Text PDF

TT-01025-CL is an oral, irreversible small molecule that potently inhibits vascular adhesion protein-1 (VAP-1) for the treatment of inflammation associated with non-alcoholic steatohepatitis (NASH). The objectives of this study were to evaluate the safety/tolerability, pharmacokinetics, and pharmacodynamics of TT-01025-CL, a VAP-1 inhibitor, in healthy Chinese volunteers. Double-blind, placebo-controlled, dose-escalation studies were conducted in subjects randomized to receive oral once-daily TT-01025-CL (ranges: 10-300 mg [single dose]; 20-100 mg for 7 days [multiple doses]) or placebo under fasting conditions.

View Article and Find Full Text PDF

The role of vascular adhesion protein-1 in diabetes and diabetic complications.

J Diabetes Investig

August 2024

Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.

Vascular adhesion protein-1 (VAP-1) plays a dual role with its adhesive and enzymatic properties, facilitating leukocyte migration to sites of inflammation and catalyzing the breakdown of primary amines into harmful by-products, which are linked to diabetic complications. Present in various tissues, VAP-1 also circulates in a soluble form in the bloodstream. Diabetes is associated with several complications such as cardiovascular disease, retinopathy, nephropathy, and neuropathy, significantly contributing to disability and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!