Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.77.3309 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
Alexandrium catenella is an important toxic algal species in the Alexandrium genus, which can form toxic red tides in large numbers. The paralytic shellfish poisoning (PSP) produced by Alexandrium catenella can seriously endanger human health and threaten the production and development of the aquaculture and fishery industries. Therefore, it is important to explore and develop effective detection and early warning methods for toxic red tides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
The abrupt drop of resistance to zero at a critical temperature is a key signature of the current paradigm of the metal-superconductor transition. However, the emergence of an intermediate bosonic insulating state characterized by a resistance peak preceding the onset of the superconducting transition has challenged this traditional understanding. Notably, this phenomenon has been predominantly observed in disordered or chemically doped low-dimensional systems, raising intriguing questions about the generality of the effect and its underlying fundamental physics.
View Article and Find Full Text PDFNat Photonics
October 2024
Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec Canada.
Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Phys Rev Lett
December 2024
Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.
We show that quantum entanglement can provide an exponential advantage in learning properties of a bosonic continuous-variable (CV) system. The task we consider is estimating a probabilistic mixture of displacement operators acting on n bosonic modes, called a random displacement channel. We prove that if the n modes are not entangled with an ancillary quantum memory, then the channel must be sampled a number of times exponential in n in order to estimate its characteristic function to reasonable precision; this lower bound on sample complexity applies even if the channel inputs and measurements performed on channel outputs are chosen adaptively or have unrestricted energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!