Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.77.2558 | DOI Listing |
J Chem Theory Comput
January 2025
Instituto de Ciencia Molecular, Universitat de València, 22085 València, Spain.
Determining the energetics of triplet electronic states of nucleobases in the biological macromolecular environment of nucleic acids is essential for an accurate description of the mechanism of photosensitization and the design of drugs for cancer treatment. In this work, we aim at developing a methodological approach to obtain accurate free energies of triplets in DNA beyond the state of the art, able to reproduce the decrease of triplet energies measured experimentally for in DNA (270 kJ/mol) vs in the isolated nucleotide in aqueous solution (310 kJ/mol). For such purposes, we adapt the free energy perturbation method to compute the free energy related to the transformation of a pure singlet state into a pure triplet state via "alchemical" intermediates with mixed singlet-triplet nature.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
2Department of Chemistry, Texas A&M University, College Station, Texas, USA; email:
Recent studies on ozone photodissociation in the Hartley and Huggins bands have provided new insights into the dissociation dynamics and product state distributions. A Λ-doublet propensity in the photodissociation has been identified through experiment and theory as the origin of the oscillatory O(a1Δ) rotational distributions and provides a promising diagnostic for determining the relative contributions of 3' and 3″ states in Huggins band spin-forbidden processes. Recent experiments on spin-forbidden dissociation have provided detailed information about the vibrational and rotational distributions of the O products and the branching ratios between the O electronic states, serving as a motivation for high-level theory.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Ronin Institute, Montclair, New Jersey 07043, USA.
The Rashba effect in a nonmagnetic condensed-matter system is described by the reduction of point-group symmetries. The inversion, two-fold rotation, and reflection symmetries transforming the wavevector to - are identified as the origin of a degenerate state according to the time-reversal symmetry. The lack of these symmetries in a bulk system or the breaking of these in a surface system is then identified as the origin of a nondegenerate state.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Materials Research, Norfolk State University, Norfolk, VA, 23504, USA.
Significant photoinduced voltages observed in permalloy structures consist of two contributions with different origins, which depend on illumination conditions, structure geometry and magnetic field in distinct ways. The first component is the plasmon drag effect voltage closely associated with plasmon propagation. The second contribution is magnetically dependent and can be related to photoinduced gradients in the sample temperature and spin polarization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!