A DNA-protein complex was isolated from Bacillus subtilis bacteriophage phi29 by sucrose gradient sedimentation or gel filtration in the presence of agents known to break noncovalent bonds. A 28,000-dalton protein was released from this complex by subsequent hydrolysis of the DNA. The DNA-protein complex was examined for its susceptibility to enzymes which act upon the 5' and 3' termini of DNA molecules. It was susceptible to exonucleolytic degradation from the 3' termini by exonuclease III but not from the 5' termini by lambda exonuclease. Attempts to label radioactively the 5' termini by phosphorylation with T4 polynucleotide kinase were unsuccessful despite prior treatment with alkaline phosphatase or phosphatase treatment of denatured DNA. Removal of the majority of the bound protein by proteolytic digestion did not increase susceptibility. These results suggest that the linked protein is covalently attached to the 5' termini of phi29 DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525865PMC
http://dx.doi.org/10.1128/JVI.27.3.776-783.1978DOI Listing

Publication Analysis

Top Keywords

bacteriophage phi29
8
phi29 dna
8
dna dna-protein
8
dna-protein complex
8
termini
6
dna
5
genome-linked protein
4
protein associated
4
associated termini
4
termini bacteriophage
4

Similar Publications

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

In recent years, the bacteriophage Φ29 (Phi29) DNA polymerase has garnered increasing attention due to its high-fidelity amplification capacity at constant temperatures. To advance the industrial application of this type of isothermal polymerases, this study mined and characterized new enzymes from the microbial metagenome based on the known Phi29 DNA polymerase sequence. The results revealed that a new enzyme, Php29 DNA polymerase, was identified in the microbial metagenome with plants as the hosts.

View Article and Find Full Text PDF

Bacteriophage Evcara is a podovirus isolated on NRRL B-24275. Its genome is 16,285 bp in length and contains 22 predicted protein-coding genes. Evcara, has been assigned to cluster GI with phages PineapplePizza and Curie that share 10 homologues with the well-characterized phage phi29.

View Article and Find Full Text PDF

Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a pre-formed prohead shell in ~5 min at room temperature in vitro. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers.

View Article and Find Full Text PDF

Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!