Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.76.2021DOI Listing

Publication Analysis

Top Keywords

production phi
4
phi mesons
4
mesons central
4
central 28si+196au
4
28si+196au collisions
4
collisions 146a
4
146a gev/c
4
production
1
mesons
1
central
1

Similar Publications

Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores.

J Am Chem Soc

December 2024

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.

Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (-DAPBF) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters.

View Article and Find Full Text PDF

Hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are the leading synthetic replacements for compounds successively banned by the Montreal Protocol and amendments. HFOs and HCFOs readily decompose in the atmosphere to form fluorinated carbonyls, including CFCHO in yields of up to 100%, which are then photolyzed. A long-standing issue, critical for the transition to safe industrial gases, is whether atmospheric decomposition of CFCHO yields any quantity of CHF (HFC-23), which is one of the most environmentally hazardous greenhouse gases.

View Article and Find Full Text PDF

A chiral agent, TPE-ASP, incorporating aspartic acid as the chiral source and tetraphenylene derivatives as chromophores, was designed and synthesized. The chiral agent was self-assembled into regular spherical nanoparticles with a maximum luminescence asymmetry factor of |2.41 × 10| at 460 nm which is attributed to TPE-ASP.

View Article and Find Full Text PDF

Synergistic effects of a sequential recirculation electrochemical system combined with low-cost UV-LEDs on the gram-negative bacteria inactivation.

Environ Sci Pollut Res Int

December 2024

Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C, Colombia.

In this work, an electrochemical system combined with low-cost UV-LEDs was implemented for the inactivation of Escherichia coli and Pseudomonas aeruginosa. The individual elimination of these bacteria was followed by plate counting and flow cytometry, as complementary techniques to establish the cell inactivation and non-viability, respectively. The contribution of the different parts of the disinfection system (anode, cathode, and light) was determined.

View Article and Find Full Text PDF

Ammonium Polyphosphate Promotes Maize Growth and Phosphorus Uptake by Altering Root Properties.

Plants (Basel)

December 2024

Key Laboratory of Sustainable Utilization of Soil Resources in The Commodity Grain Bases of Jilin Province, College of Resource and Environmental Sciences, Jilin Agricultural University, Changchun 130118, China.

Phosphorus (P) is an essential nutrient for maize growth, significantly affecting both yield and quality. Despite the typically high concentration of available P in black soils, the efficiency of crop uptake and utilization remains relatively low. This study aimed to evaluate the effects of different P fertilizers on maize yield, root growth parameters, and P use efficiency to identify strategies for optimizing P management in black soil regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!