Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.76.1663DOI Listing

Publication Analysis

Top Keywords

extended infrared
4
infrared studies
4
studies high
4
high pressure
4
pressure hydrogen
4
extended
1
studies
1
high
1
pressure
1
hydrogen
1

Similar Publications

Cationic Magnetically Active Nitrogen-Doped Polycyclic Aromatic Hydrocarbon with Record Low Band Gap.

Angew Chem Int Ed Engl

January 2025

Inner Mongolia University, Chemistry and Chemical Engineering, 235 West University Street, 010021, Hohhot, CHINA.

Polycyclic aromatic hydrocarbons (PAHs) have attracted significant interest in material chemistry, particularly if they own extremely low band gaps and magnetic properties. However, challenges remain regarding the synthetic accessibility and energy saturation issues. In this study, we introduce NR-11, which consists of eleven aromatic rings in its main conjugation and is separately doped with two electron-rich nitrogen atoms.

View Article and Find Full Text PDF

Gradient Porous and Carbon Black-Integrated Cellulose Acetate Aerogel for Scalable Radiative Cooling.

Small

January 2025

School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.

Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.

View Article and Find Full Text PDF

The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.

View Article and Find Full Text PDF

A QbD Approach for the Formulation and Control of Triclabendazole in Uncoated Tablets: From Polymorphs to Drug Formulation.

Pharmaceutics

December 2024

Área de Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.

Triclabendazole (TCB) is a well-established anthelmintic effective in treating fascioliasis, a neglected tropical disease. This study employs quality by design (QbD) to investigate the impact of TCB polymorphism and pharmacotechnical variables, from the development of immediate-release tablets to process optimization and green analysis. Critical process parameters (CPPs) and critical material attributes (CMAs), characterized by type of polymorph, composition of excipients (talc, lactose, cornstarch, and magnesium stearate), and compression force, were screened using a Plackett-Burman design (n = 24), identifying polymorphic purity and cornstarch as a CPP.

View Article and Find Full Text PDF

The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!