Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.75.725 | DOI Listing |
Nat Commun
January 2025
Anhui Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
Thermal conductivity and electrical resistivity at ultralow temperatures and high magnetic fields are studied in the topological compensated semimetals TaAs, NbAs, and NdSb. A striking phenomenon is observed where the thermal conductivity shows a T scaling at very low temperatures, while the resistivity shows a T-independent residual term. This indicates a strong violation of the Wiedemann-Franz (WF) law, since the field dependence of κ shows that the low-temperature thermal conductivity is dominated by electronic transport.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Physics, Emory University, Atlanta, Georgia 30322, United States.
SrIrO is a metallic complex oxide with unusual electronic and magnetic properties believed to originate from electron correlations due to its proximity to the Mott metal-insulator transition. However, the nature of its electronic state and the mechanism of metallic conduction remain poorly understood. We demonstrate that the shot noise produced by nanoscale SrIrO junctions is strongly suppressed, inconsistent with diffusive quasiparticle transport.
View Article and Find Full Text PDFRep Prog Phys
September 2024
Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
Symmetry-breaking orders can not only compete with each other, but also be intertwined, and the intertwined topological and symmetry-breaking orders make the situation more intriguing. This work examines the archetypal correlated flat band model on a checkerboard lattice at fillingν=2/3and we find that the unique interplay between smectic charge order and topological order gives rise to two novel quantum states. As the interaction strength increases, the system first transitions from a Fermi liquid (FL) into FQAH smectic (FQAHS) state, where the topological order coexists cooperatively with smectic charge order with enlarged ground-state degeneracy and interestingly, the Hall conductivity isσxy=ν=2/3, different from the band-folding or doping scenarios.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2024
Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
We report the first theoretical investigation of the spectroscopic, electrical and optical transport signatures of-wave Pauli limited superconductors, based on a non perturbative numerical approach. We demonstrate that the high magnetic field low temperature regime of these materials host a finite momentum paired superconducting phase. Multi-branched dispersion spectra with finite energy superconducting gaps, anisotropic segmentation of the Fermi surface and spatial modulations of the superconducting order characterizes this finite momentum paired phase and should be readily accessible through angle resolved photo emission spectroscopy, quasiparticle interference and differential conductance measurements.
View Article and Find Full Text PDFNano Lett
September 2023
Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Korea.
We report on the Tomonaga-Luttinger liquid (TLL) behavior in fully degenerate 1D Dirac Fermions. A ternary van der Waals material NbSiTe incorporates in-plane NbTe chains, which produce a 1D Dirac band crossing Fermi energy. Tunneling conductance of electrons confined within NbTe chains is found to be substantially suppressed at Fermi energy, which follows a power law with a universal temperature scaling, hallmarking a TLL state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!