Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.73.902DOI Listing

Publication Analysis

Top Keywords

coherent electric-field
4
electric-field effects
4
effects semiconductors
4
coherent
1
effects
1
semiconductors
1

Similar Publications

Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.

View Article and Find Full Text PDF

Analysis of electrical activities in a functional neuron with dual memristors.

J Theor Biol

February 2025

College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China. Electronic address:

Neuron as a charged body, it is easily disturbed by the external electromagnetic field, which changes the electrical activities of the neurons. In fact, the interference of external electric or magnetic field is the process of energy injection of neurons, the injection of energy will redistribute the field energy inside the neurons, and the redistribution of energy will change the electrical activities of the neurons. Therefore, we design a neuron model with double memristors to explore the external electromagnetic field on the regulation of neural electrical activity.

View Article and Find Full Text PDF

Quantum Otto Heat Engine Using Polar Molecules in Pendular States.

Molecules

November 2024

State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.

Quantum heat engines (QHEs) are established by applying the principles of quantum thermodynamics to small-scale systems, which leverage quantum effects to gain certain advantages. In this study, we investigate the quantum Otto cycle by employing the dipole-dipole coupled polar molecules as the working substance of QHE. Here, the molecules are considered to be trapped within an optical lattice and located in an external electric field.

View Article and Find Full Text PDF

Multiferroic materials that exhibit interacting and coexisting properties, like ferroelectricity and ferromagnetism, possess significant potential in the development of novel technologies that can be controlled through the application of external fields. They also exhibit varying regions of polarity, known as domains, with the interfaces that separate the domains referred to as domain walls. In this study, using three-dimensional (3D) bragg coherent diffractive imaging (BCDI), we investigate the dynamics of multiferroic domain walls in a single hexagonal dysprosium manganite (h-DyMnO ) nanocrystal under varying applied electric field.

View Article and Find Full Text PDF

Fast modulation of optical signals that carry multidimensional information in the form of wavelength, phase or polarization has fueled an explosion of interest in integrated photonics. This interest however masks a significant challenge which is that independent modulation of multi-wavelength carrier signals in a single waveguide is not trivial. Such challenge is attributed to the longitudinal direction of guided-mode propagation, limiting the spatial separation and modulation of electric-field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!