Runaway electrons in plasma current sheets.

Phys Rev Lett

Published: January 1994

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.72.645DOI Listing

Publication Analysis

Top Keywords

runaway electrons
4
electrons plasma
4
plasma current
4
current sheets
4
runaway
1
plasma
1
current
1
sheets
1

Similar Publications

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

Energy conservation dictates that an electron with elementary charge e traversing a vacuum gap formed by electrodes maintained at potential difference U volts acquires maximum energy of eU. In many experiments electrons with energies as high as 3eU have been observed. The experimental discovery of this effect was made over 50 years ago and is still a subject of significant controversy in applications related to x-ray generation from high voltage discharges.

View Article and Find Full Text PDF

Runaway electrons, accelerated in a tokamak discharge to high energies (tens of MeV), can cause serious damage to plasma facing components. Therefore, it is important to develop effective mitigation strategies to reduce the risk of tokamak damage. To study the effects of various mitigation strategies, a dedicated diagnostic, the calorimetry probe, was developed at the COMPASS tokamak.

View Article and Find Full Text PDF

The impact of tube voltage on the erosion of rotating x-ray anodes.

Med Phys

November 2024

Particle Physics, Astrophysics and Medical Imaging Department, KTH Royal Institute of Technology, Stockholm, Sweden.

Background: The permitted input power density of rotating anode x-ray sources is limited by the performance of available target materials. The commonly used simplified formulas for the focal spot surface temperature ignore the tube voltage despite its variation in clinical practice. Improved modeling of electron transport and target erosion, as proposed in this work, improves the prediction of x-ray output degradation by target erosion, the absolute x-ray dose output and the quality of diagnostic imaging and orthovolt cancer therapy for a wide range of technique factors.

View Article and Find Full Text PDF

Dreicer generation is one of the main mechanisms of runaway electron generation in weakly ionized plasmas. It is often described as a diffusive flow from the Maxwellian core into high energies under the effect of the electric field. In this Letter we demonstrate a critical role of the binary nature of inelastic collisions in weakly ionized plasma during tokamak startup, where some electrons experience virtually no collisions during acceleration to the critical energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!