Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.72.554 | DOI Listing |
BMC Nephrol
January 2025
Department of Nephrology, Japan Community Healthcare Organization Sendai Hospital, 981-3281, Sendai, Miyagi, Japan.
Background: Oliguric acute kidney injury (AKI) is one of the critical conditions which needs emergent treatment due to the lack of the capacity of excreting toxins and fluids, and plasma membrane bleb formation is considered as one of the characteristic morphologic alterations in ischemic AKI in both animal models and human. We present here an autopsy case with clear electron microscopy images capturing a definitive instance of blebbing in ischemic AKI.
Case Presentation: A 66-year-old man was admitted for oliguric AKI with nephrotic syndrome (NS).
Phys Rev Lett
December 2024
Laboratoire PHENIX, Sorbonne Université, CNRS, (Physico-Chimie des Electrolytes et Nanosystèmes Interfaciaux), 4 Place Jussieu, 75005 Paris, France.
In recent years, the theoretical description of electrical noise and fluctuation-induced effects in electrolytes has gained renewed interest, enabled by stochastic field theories like stochastic density functional theory (SDFT). Such models, however, treat solvents implicitly, ignoring their generally polar nature. In the present study, starting from microscopic principles, we derive a fully explicit SDFT theory that applies to ions in a polar solvent.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chalmers University of Technology, Department of Physics, 412 96 Göteborg, Sweden.
The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Center for Satellite Application on Environment, Ministry of Ecology and Environment, Beijing 100094, China.
The edge structures of carbonaceous materials exhibit temperature-dependent behavior on the atomic scale, with variations in the relative ratios of zigzag, reconstructed 5-7 zigzag (ZZ57), and armchair edges observed at different temperatures. Nevertheless, the mechanisms underlying the interconversion of these edge structures and the influence of the surrounding metals remain unclear. This study investigates the reconstruction and reversible transformation processes of ZZ57 edge structures in carbon materials and examines the effects of different metal atoms (Na, K, and Ca) by using density functional theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!