Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.72.136DOI Listing

Publication Analysis

Top Keywords

incommensurate magnetic
4
magnetic order
4
order heavy
4
heavy fermion
4
fermion superconductor
4
superconductor uni2al3
4
incommensurate
1
order
1
heavy
1
fermion
1

Similar Publications

The magnetic structures of the Ho-based i-MAX phase (MoHo)GaC were studied with neutron powder diffraction at low temperature. (MoHo)GaC crystallizes in the orthorhombic space group Cmcm. The material undergoes two successive antiferromagnetic transitions at T = 10 K and T = 7.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.

View Article and Find Full Text PDF

Energy spectrum theory of incommensurate systems.

Natl Sci Rev

December 2024

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China.

Because of the lack of translational symmetry, calculating the energy spectrum of an incommensurate system has always been a theoretical challenge. Here, we propose a natural approach to generalize energy band theory to incommensurate systems without reliance on the commensurate approximation, thus providing a comprehensive energy spectrum theory of incommensurate systems. Except for a truncation-dependent weighting factor, the formulae of this theory are formally almost identical to that of Bloch electrons, making it particularly suitable for complex incommensurate structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!