Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.70.2802 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.
We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Chair of Biophysics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 92054, Germany.
The term "aerophilic surface" is used to describe superhydrophobic surfaces in the Cassie-Baxter wetting state that can trap air underwater. To create aerophilic surfaces, it is essential to achieve a synergy between a low surface energy coating and substrate surface roughness. While a variety of techniques have been established to create surface roughness, the development of rapid, scalable, low-cost, waste-free, efficient, and substrate-geometry-independent processes for depositing low surface energy coatings remains a challenge.
View Article and Find Full Text PDFPlant Divers
November 2024
Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Flowering phenology of plants, which is important for reproductive growth, has been shown to be influenced by climate change. Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change. Here, we used long-term collections of 33 flowering plant species from the Gongga Mountains (Mt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!