Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.70.1355 | DOI Listing |
Phys Rev E
November 2024
Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.
View Article and Find Full Text PDFProc Jpn Acad Ser B Phys Biol Sci
December 2024
Department of Physics, The University of Tokyo, Tokyo, Japan.
Λ = Λ(1405) plays an essential role in the formation of kaonic nuclear clusters (KNC). The simplest KNC, Kpp, has the structure Λp = (Kp)p, in which a real kaon migrates between two nucleons, mediating super-strong Λp attraction. Production data of Kpp have been accumulated by DISTO, J-PARC E27 and J-PARC E15 experiments.
View Article and Find Full Text PDFCommun Math Phys
November 2024
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6396 USA.
Much of the analysis of F-theory-based Standard Models boils down to computing cohomologies of line bundles on matter curves. By varying parameters one can degenerate such matter curves to singular ones, typically with many nodes, where the computation is combinatorial and straightforward. The question remains to relate the (a priori possibly smaller) value on the original curve to the singular one.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland.
Modern hydrodynamic simulations of core-collapse supernovae and neutron-star mergers require knowledge not only of the equilibrium properties of strongly interacting matter, but also of the system's response to perturbations, encoded in various transport coefficients. Using perturbative and holographic tools, we derive here an improved weak-coupling and a new strong-coupling result for the most important transport coefficient of unpaired quark matter, its bulk viscosity. These results are combined in a simple analytic pocket formula for the quantity that is rooted in perturbative quantum chromodynamics at high densities but takes into account nonperturbative holographic input at neutron-star densities, where the system is strongly coupled.
View Article and Find Full Text PDFSensors (Basel)
August 2024
Stefan Batory Academy of Applied Sciences, Stefana Batorego 64C, 96-100 Skierniewice, Poland.
SQM-ISS is a detector that will search from the International Space Station for massive particles possibly present among the cosmic rays. Among them, we mention strange quark matter, Q-Balls, lumps of fermionic exotic compact stars, Primordial Black Holes, mirror matter, Fermi balls, etc. These compact, dense objects would be much heavier than normal nuclei, have velocities of galaxy-bound systems, and would be deeply penetrating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!