An important means of investigating gains and losses to prey caused by mimicry is through mathematical or computer constructs which represent and explore limited aspects of mimicry situations. Such studies use virtual predators which are usually simple automata, 'robots' that, through simple rules, vary virtual attack rates on virtual insect prey. In this paper I consider the effect of variations in predator memory and learning on mimicry dynamics. When there is mimicry between unequally noxious prey, the way that memory is modelled is shown to be crucial. If forgetting rates are fixed, an increase in the density of the least defended prey produces monotonic gains or losses in protection. However, if forgetting rate is inversely related in some way to degree of noxiousness of the prey then attack rates initially rise with the density of the least defended prey, reach a cusp and then fall. I show that the generation of this highly unconventional up-down result appears to be independent of variations in learning rate. This work shows how sensitive the predictions of virtual predators may be to relatively small changes in behavioural rules. Copyright 1999 The Association for the Study of Animal Behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/anbe.1998.0943 | DOI Listing |
Front Vet Sci
January 2025
GenesisEgo, Seoul, Republic of Korea.
Hemangiosarcoma is a highly malignant tumor commonly affecting canines, originating from endothelial cells that line blood vessels, underscoring the importance of early detection. This canine cancer is analogous to human angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA (cfDNA) represents a promising step forward in early cancer diagnosis. In this study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-affected and 36 healthy dogs, aiming to enhance early cancer detection accuracy through machine learning models.
View Article and Find Full Text PDFRegulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
The swift advancement of contemporary communication technology, along with the development of radar systems, has raised the requirements for antenna systems. In this work, an integrated array antenna operating in the 24 GHz and 77 GHz frequency bands is proposed. The microstrip antenna array element uses a width reduction approach to reduce its volume by 39.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA.
Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne's disease.
View Article and Find Full Text PDFCells
January 2025
School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!