Distension of the rat intestine causes a capsaicin-sensitive, pressure-dependent depressor response which is indicative of nociception. A hypersensitivity of jejunal distension which possibly involves tachykinin NK2 receptors and is restricted to areas with mast cell hyperplagia is observed in rats infected 30 days previously with Nippostrongylus brasiliensis. This study aimed to further investigate the role of mast cells, tachykinins and kinins in this intestinal hypersensitivity. The activity of a mast cell stabilizer (doxantrazole), kinin antagonists (des-Arg 10-[Leu9]-kallidin, B1, HOE 140, B2) and tachykinin antagonists (CP 99, 994, NK1, SR 142801, NK3) were tested against the distension-induced depressor responses in control and post-infected rats. The 30-day post-infection-induced hypersensitivity was significantly reduced by the mast cell stabilizer doxantrazole. The hypersensitivity had resolved in 90-day post-infected rats when mast cells levels had normalized. Des-Arg 10-[Leu9]-kallidin and HOE 140 did not inhibit the depressor responses in controls but produced a significant inhibition in 30-day post-infected rats. CP 99,994 inhibited the depressor responses in post-infected rats with an equal potency to that in control rats. SR 142801 was inactive in both groups. In conclusion, mast cells and kinin-mediated nociception appear to be involved in post-infection intestinal hypersensitivity whereas tachykinin NK1 and NK3 receptors do not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2982.1998.00123.x | DOI Listing |
J Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Recent genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified approximately 70 genetic loci linked to the disorder. The pivotal challenge in the post-GWAS era is dissecting the underlying causal variants and effector genes, a crucial step for effective therapeutic development. Most of these variants reside in non-coding regions of the genome, suggesting their regulatory role in distal gene expression.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China.
Background: Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death.
Methods: Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654).
Sci Rep
January 2025
Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China.
Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.
View Article and Find Full Text PDFCardiovasc Pathol
January 2025
Department of Anatomical Sciences, St. George's University, School of Medicine, Grenada, West Indies; Department of Pathology, St. George's University, School of Medicine, Grenada, West Indies; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!