It has been estimated that eukaryotes carry more than 50 genes for tRNA modifying enzymes. Of the few so far identified most come from yeast, a lower eukaryote. In Saccharomyces cerevisiae, the TRM1 gene is a nuclear gene encoding the tRNA(m2/ 2G(26))dimethyltransferase, which catalyses the formation of the N2, N2-dimethylguanosine at position 26 in tRNA. We have isolated and characterized the corresponding gene ZC376.5 in Caenorhabditis elegans. Via RTPCR the cDNA sequence of the full length ZC376.5 has now been cloned, expressed in Escherichia coli and demonstrated to encode a tRNA(m2/2G(26))dimethyltransferase that produces dimethyl-G26 in vivo and in vitro with tRNA from yeast and bacteria as substrates. This is the first example of a complete gene sequence coding for a tRNA modifying enzyme from a multicellular organism. A point mutation in exon IV in the C. elegans genome sequence coding for the tRNA(m2/2G(26))methyltransferase that substituted arginine246 for glycine eliminated the modification activity. Exchanging the corresponding lysine residue in the yeast Trm1p for alanine caused a severe loss of activity, indicating that the identity of the amino acid at this position is important for enzyme activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(98)00550-2DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
enzyme activity
8
trna modifying
8
sequence coding
8
trna
5
elegans zc3765
4
zc3765 encodes
4
encodes trna
4
trna m2/2g26dimethyltransferance
4
m2/2g26dimethyltransferance 246arginine
4

Similar Publications

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Strawberry anthocyanin pelargonidin-3-glucoside attenuated OA-induced neurotoxicity by activating UPR.

Food Funct

January 2025

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in under oleic acid (OA) exposure.

View Article and Find Full Text PDF

Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.

Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.

View Article and Find Full Text PDF

Structural and evolutionary insights into the functioning of glycoprotein hormones and their receptors.

Andrology

January 2025

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.

The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!