Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.68.686DOI Listing

Publication Analysis

Top Keywords

two-dimensional magnet
4
magnet curie
4
curie temperature
4
temperature epitaxial
4
epitaxial layers
4
layers cu100
4
two-dimensional
1
curie
1
temperature
1
epitaxial
1

Similar Publications

Transmission electron microscopy (TEM) is an indispensable tool for elucidating the intrinsic atomic structures of materials and provides deep insights into defect dynamics, phase transitions, and nanoscale structural details. While numerous intriguing physical properties have been revealed in recently discovered two-dimensional (2D) quantum materials, many exhibit significant sensitivity to water and oxygen under ambient conditions. This inherent instability complicates sample preparation for TEM analysis and hinders accurate property measurements.

View Article and Find Full Text PDF

Effect of Hubbard U-corrections on the electronic and magnetic properties of 2D materials: a high-throughput study.

NPJ Comput Mater

January 2025

Computational Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark.

We conduct a systematic investigation of the role of Hubbard U corrections in electronic structure calculations of two-dimensional (2D) materials containing 3 transition metals. Specifically, we use density functional theory (DFT) with the PBE and PBE+U approximations to calculate the crystal structure, band gaps, and magnetic parameters of 638 monolayers. Based on a comprehensive comparison to experiments we first establish that the inclusion of the U correction worsens the accuracy for the lattice constants.

View Article and Find Full Text PDF

High-refractive-index (HRI) dielectrics are gaining increasing attention as building blocks for compact lasers. Their ability to simultaneously support both electric and magnetic modes provides greater versatility as compared to plasmonic platforms. Moreover, their reduced absorption loss minimizes heat generation, further enhancing their performance.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!