Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.68.3571DOI Listing

Publication Analysis

Top Keywords

band structure
4
structure neutral
4
neutral magnetic
4
magnetic dipoles
4
dipoles periodic
4
periodic magnetic
4
magnetic field
4
field simple
4
simple spin
4
spin polarizer
4

Similar Publications

A low-frequency broadband ring transducer driven by the flextensional structure.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.

View Article and Find Full Text PDF

Nonplanar (butterfly-shaped) phenothiazine () and its derivative's () photophysical and spectral properties have been tuned by varying the solvents and their polarity and investigated employing spectroscopic techniques such as UV-Vis, steady-state and time-resolved fluorescence, and TDDFT calculations. The UV-Vis absorption studies and TDDFT calculations reveal two distinct bands for both compounds: a strong π-π* transition at shorter wavelengths and a weaker -π* transition, which displays a little bathochromic shift in polar solvents. The detailed emission studies reveal that such dual emission is a result of the photoinduced excited-state conjugation enhancement (ESCE) process.

View Article and Find Full Text PDF

Although microenvironments surrounding single-atom catalysts (SACs) have been widely demonstrated to have a remarkable effect on their catalytic performances, it remains unclear whether the local structure beyond the secondary coordination shells works as well or not. Herein, we employed a series of metal-organic frameworks (MOFs) with well-defined and tunable second-beyond coordination spheres as model SAC electrocatalysts to discuss the influence of long-distance structure on the ammonia synthesis from nitrate, which were synthesized and denoted as Cu-NDI-X (X = NMe, H, F). It is first experimentally confirmed that the remote substitution of function groups beyond the secondary coordination sphere can remarkably affect the activity of ammonia synthesis.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Effect of the TiCT (T = O, OH, and H) Functionalization on the Formation of (TiO)/TiCT Composites.

J Phys Chem C Nanomater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.

First-principles density functional theory calculations are carried out on the (TiO) cluster supported on the TiCT (0001) surface with different chemical terminations, , -H, -O, and -OH, to study the interaction and understand the TiCT functionalization effect on the formation of (TiO)/TiCT composites. Results show an exothermic interaction for all cases, whose strength is driven by the surface termination, promoting weaker bonds when the MXene is functionalized with H atoms. For TiCH and TiC(OH) MXenes, the interaction is accompanied by a charge transfer towards the titania cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!