Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00357211DOI Listing

Publication Analysis

Top Keywords

water-salt solutions
8
solutions 2-methylpentane-23-diol
8
dna crystals
8
crystallization dna
4
dna fragments
4
fragments water-salt
4
2-methylpentane-23-diol fragments
4
fragments calf
4
calf thymus
4
dna
4

Similar Publications

Purpose: The present study investigated the effect of unpleasant salty or bitter tastes on cycling sprint performance and knee-extensor force characteristics in different fatigue states.

Methods: Following a familiarization session, 11 trained male cyclists completed 3 experimental trials (salty, bitter, and water) in a randomized crossover order. In each trial, participants cycled at 85% of the respiratory compensation point for 45 minutes and then, after a 5-minute rest, completed a 1-minute sprint.

View Article and Find Full Text PDF

Spatiotemporal characterization of water diffusion anomalies in saline solutions using machine learning force field.

Sci Adv

December 2024

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Understanding water behavior in salt solutions remains a notable challenge in computational chemistry. Conventional force fields have shown limitations in accurately representing water's properties across different salt types (chaotropes and kosmotropes) and concentrations, demonstrating the need for better methods. Machine learning force field applications in computational chemistry, especially through deep potential molecular dynamics (DPMD), offer a promising alternative that closely aligns with the accuracy of first-principles methods.

View Article and Find Full Text PDF

Achieving "Ion Diode" Salt Resistance in Solar Interfacial Evaporation by a Tesla Valve-Like Water Transport Structure.

Small

October 2024

Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Salt deposition is a disturbing problem that limits the development of passive solar-driven interfacial evaporation. Inspired by the passive fluid control mechanism of the Tesla valve, a novel solar evaporator is proposed with a Tesla valve-like water transport structure to prevent salt accumulation at the evaporation interface. A unique "ion diode" salt resistance of this evaporator is significantly achieved by optimizing the two asymmetric water transport structures, consisting of one Tesla valve-like side and one wide-leg side, which establish a reverse-suppressing and forward-accelerating water transport channel.

View Article and Find Full Text PDF

Efficient 2D membranes play a critical role in water purification and desalination. However, most 2D membranes, such as graphene oxide (GO) membranes, tend to swell or disintegrate in liquid, making precise ionic sieving a tough challenge. Herein, the fabrication of the polyoxometalate clusters (PW) intercalated reduced graphene oxide (rGO) membrane (rGO-PW) is reported through a polyoxometalate-assisted in situ photoreduction strategy.

View Article and Find Full Text PDF

Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity. It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation. Furthermore, downward salt ion transport is also desired to prevent salt accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!