Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.66.715 | DOI Listing |
J Colloid Interface Sci
March 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; School of Chemical Engineering and Technology and Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, 300350, China. Electronic address:
The anomalous dynamics of thin polymer films, often attributed to geometrical confinement and interfacial interaction, have aroused considerable interest, particularly with regard to the inherent and processing-induced chain conformation changes. Here, the capillary peeling method is employed to obtain reattached thin polystyrene films with either the substrate or the air side beneath. Compared to traditional dewetting experiments solely conducted on the substrate side of as-cast films, the difference in dewetting behavior between the two sides of films is demonstrated, with the air side showing a faster dewetting velocity in the early stage and a larger apparent residual stress.
View Article and Find Full Text PDFNanotechnology
November 2024
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico.
This study investigates the fluence-dependent evolution of gold nanoparticles formed through single nanosecond pulsed laser dewetting of a gold thin film on a fused silica substrate. By employing a well-defined Airy-like laser spatial profile and reconstructing scanning electron microscope images across the irradiation spot into a panoramic view, we achieve a detailed continuous analysis of the nanoparticle formation process. Our morphological analysis, combined with finite element thermal simulations directly correlated with the applied fluence, identifies two distinct thresholds.
View Article and Find Full Text PDFChem Sci
November 2024
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering Shanghai 200240 China
Langmuir
December 2024
Siemens Industry Software Netherlands B.V, The Hague 2595 BN, Netherlands.
This work provides a framework to digitally assess any droplet's static and dynamic contact angles on coatings and polymeric substrates. We are introducing a new dissipative particle dynamics coarse-grained model to attain the spatiotemporal conditions and the coexistence of different phases that such investigation dictates. Two computational techniques are additionally developed; a robust technique to calculate the static contact angle using density profiles and a perturbation method to evaluate dynamic contact angles.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States.
Fluid instabilities can be harnessed for facile self-assembly of patterned structures on the nano- and microscale. Evaporative self-assembly from drops is one simple technique that enables a range of patterning behaviors due to the multitude of fluid instabilities that arise due to the simultaneous existence of temperature and solutal gradients. However, the method suffers from limited controllability over patterns that can arise and their morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!