Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.66.2778DOI Listing

Publication Analysis

Top Keywords

anisotropic thermal
4
thermal conductivity
4
conductivity single
4
single quasicrystals
4
quasicrystals al65ni20co15
4
al65ni20co15 al62si3cu20co15
4
anisotropic
1
conductivity
1
single
1
quasicrystals
1

Similar Publications

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Ultrahigh carrier mobility and multidirectional piezoelectricity in 2D Janus copper-containing chalcogenide monolayers.

Phys Chem Chem Phys

January 2025

Institute for Computational Materials Science, Joint Center for Theoretical Physics, and Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

Two-dimensional (2D) materials have attracted enormous research attention due to their remarkable properties and potential applications in electronic and optoelectronic devices. In this work, Janus 2D copper-containing chalcogenides, CuPSeS and CuPTeSe monolayers, are proposed and studied systematically based on first-principles calculations. These two Janus-structured materials possess the same thermal and dynamic stability as the perfect CuPSe structure.

View Article and Find Full Text PDF

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

Frequency-domain thermoreflectance with beam offset without the spot distortion for accurate thermal conductivity measurement of anisotropic materials.

Rev Sci Instrum

January 2025

Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura C3, Nishikyo-ku, Kyoto 615-8540, Japan.

The measurement of thermal conductivities of anisotropic materials and atomically thin films is pivotal for the thermal design of next-generation electronic devices. Frequency-domain thermoreflectance (FDTR) is a pump-probe technique that is known for its accurate and straightforward approach to determining thermal conductivity and stands out as one of the most effective methodologies. Existing research has focused on advancing a measurement system that incorporates beam-offset FDTR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!