Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.65.1667DOI Listing

Publication Analysis

Top Keywords

experimental observation
4
observation spatiotemporal
4
spatiotemporal wave
4
wave forms
4
forms types
4
types soliton-antisoliton
4
soliton-antisoliton interactions
4
interactions josephson
4
josephson transmission
4
transmission lines
4

Similar Publications

In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.

View Article and Find Full Text PDF

Elastic Wave Packets Crossing a Space-Time Interface.

Phys Rev Lett

December 2024

Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.

The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.

View Article and Find Full Text PDF

In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

A combined experimental and theoretical study is carried out on the three-body recombination process in a gas of microwave-shielded polar molecules. For ground-state polar molecules dressed with a strong microwave field, field-linked bound states can appear in the intermolecular potential. We model three-body recombination into such bound states using classical trajectory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!