Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.65.1667 | DOI Listing |
Soft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.
The interaction between waves and evolving media challenges traditional conservation laws. We experimentally investigate the behavior of elastic wave packets crossing a moving interface that separates two media with distinct propagation properties, observing the noninvariance of wavelength and frequency. Our experimental setup employs an elastic strip whose local stretching can be dynamically altered by pulling one end at a constant velocity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Beijing Computational Science Research Center, Beijing 100193, China.
In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Xi'an Jiaotong University, School of Microelectronics & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, China.
The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Columbia University, Department of Physics, New York, New York, USA.
A combined experimental and theoretical study is carried out on the three-body recombination process in a gas of microwave-shielded polar molecules. For ground-state polar molecules dressed with a strong microwave field, field-linked bound states can appear in the intermolecular potential. We model three-body recombination into such bound states using classical trajectory calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!