Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.65.1235 | DOI Listing |
PLoS One
December 2024
Departement of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
Purpose: This study aimed to investigate the effect of chlorhexidine (CHX) cavity disinfectant on interfacial microleakage and micro-tensile bond strength (μTBS) of a universal adhesive bonded to dentin in both self-etch (SE) and etch-and-rinse (ER) modes.
Methods: Class I cavities were prepared in the coronal dentin of extracted human teeth and assigned to two etching modes (SE or ER), then subdivided by disinfection with or without CHX (n = 5). Cavities were restored using Single Bond Universal Adhesive and Filtek Z350 XT composite.
ACS Nano
December 2024
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China.
Single-crystalline Ni-rich layered oxides are one of the most promising cathode materials for lithium-ion batteries due to their superior structural stability. However, sluggish lithium-ion diffusion kinetics and interfacial issues hinder their practical applications. These issues intensify with increasing Ni content in the ultrahigh-Ni regime (≥90%), significantly threatening the practical viability of the single-crystalline strategy for ultrahigh-Ni layered oxide cathodes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
Artificial superlattices composed of perovskite oxides serves as an essential platform for engineering coherent phonon transport by redefining the lattice periodicity, which strongly influences the lattice-coupled phase transitions in charge and spin degrees of freedom. However, previous methods of manipulating phonons have been limited to controlling the periodicity of superlattice, rather than utilizing complex mutual interactions that are prominent in transition metal oxides. In this study on oxide superlattices composed of ferromagnetic metallic SrRuO and quantum paraelectric SrTiO, phonon modulation by controlling the geometry of superlattice in atomic-scale precision is realized, demonstrating the coherent phonon engineering using structural and magnetic phase transitions.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, People's Republic of China.
The thermal properties of interfaces in nanomaterials are critical for various technological applications, including thermal management in electronic and photonic devices, thermoelectric conversion and thermal insulation. Recent advancements in numerical simulation tools (the non-equilibrium Green's approach, the Boltzmann transport equation and the Monte Carlo method, molecular dynamics simulations) have significantly enhanced our understanding of phonon transport and scattering processes in nanomaterials. These advances have led to the discovery of new thermal interfacial materials and enabled precise modulation of phonon thermal conductance to achieve desired thermal performance.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Physics, Indian Institute of Technology, Kanpur 208016, India.
Hall effects, including anomalous and topological types, in correlated ferromagnetic oxides provide an intriguing framework to investigate emergent phenomena arising from the interaction between spin-orbit coupling and magnetic fields. SrRuOis a widely studied itinerant ferromagnetic system with intriguing electronic and magnetic characteristics. The electronic transport of SrRuOis highly susceptible to the defects (O/Ru vacancy, chemical doping, ion implantation), and interfacial strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!