Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.64.673 | DOI Listing |
J Chem Phys
January 2025
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
Auxetic materials hold tremendous potential for many advanced applications, but candidates are quite scarce, especially at two dimensions. Here, we focus on two-dimensional (2D) metal dichalcogenides and dihalides with the chemical formula MX2 by screening structures sharing the P4̄m2 space group among 330 MX2 compounds from the computational 2D materials database. Via high-throughput first-principles computations, 25 stable MX2 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Ge, Cd, Sn; X = F, Cl, Br, I, O, S, Se) systems with in-plane negative Poisson's ratios (NPRs) are successfully identified.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Departmento de Fisica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.
Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He) irradiation.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Proc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268.
Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge.
View Article and Find Full Text PDFSci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!