Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.63.911DOI Listing

Publication Analysis

Top Keywords

theory interband
4
interband electron
4
electron raman
4
raman scattering
4
scattering yba2cu3o7
4
yba2cu3o7 probe
4
probe unconventional
4
unconventional superconductivity
4
theory
1
electron
1

Similar Publications

Cooling of Semiconductor Devices via Quantum Tunneling.

Phys Rev Lett

December 2024

Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA.

Classical transport of electrons and holes in nanoscale devices leads to heating that severely limits performance, reliability, and efficiency. In contrast, recent theory suggests that interband quantum tunneling and subsequent thermalization of carriers with the lattice results in local cooling of devices. However, internal cooling in nanoscale devices is largely unexplored.

View Article and Find Full Text PDF

TiCT MXene Thin Films and Intercalated Species Characterized by IR-to-UV Broadband Ellipsometry.

J Phys Chem C Nanomater Interfaces

January 2025

Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.

MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.

View Article and Find Full Text PDF

Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs monolayer under different biaxial tensile strains based on the state-of-the-art electron-phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs monolayers.

View Article and Find Full Text PDF

Recent activity in the area of chiroptical phenomena has been focused on the connection between structural asymmetry, electron spin configuration and light/matter interactions in chiral semiconductors. In these systems, spin-splitting phenomena emerge due to inversion symmetry breaking and the presence of extended electronic states, yet the connection to chiroptical phenomena is lacking. Here, we develop an analytical effective mass model of chiral excitons, parameterized by density functional theory.

View Article and Find Full Text PDF

Realizing Strong and Robust Quasi-1D Superconductors via Multiorbital Chains: NaBe as an Example.

Phys Rev Lett

December 2024

State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.

Quasi-one-dimensional (Q1D) systems are inherently unfavorable for superconductivity due to electronic instabilities and significant quantum fluctuations. This has led to a half-century-long pursuit of strong and robust Q1D superconductors. Herein, we propose an effective multiorbital chain approach that utilizes the interorbital self-doping to not only suppress the instability but also to position the Fermi level near the band edges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!