Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.60.2351 | DOI Listing |
MAGMA
January 2025
Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
Objective: To establish an arterial spin labeling (ASL) protocol for rat livers that improves data reliability and reproducibility for perfusion quantification.
Methods: This study used respiratory-gated, single-slice, FAIR-based ASL imaging with multiple inversion times (TI) in rat livers. Quality assurance measures included: (1) introduction of mechanical ventilation to ensure consistent respiratory cycles by controlling the respiratory rate (45 bpm), tidal volume (10 ml/kg), and inspiration: expiration ratio (I:E ratio, 1:2), (2) optimization of the trigger window for consistent trigger points, and (3) use of fit residual map and coefficient of variance as metrics to assess data quality.
Alzheimers Res Ther
January 2025
Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Valdemar Hansens Vej 1-23, Glostrup, 2600, Denmark.
Background: Accumulation of β-amyloid (Aβ) in the brain is a hallmark of Alzheimer's Disease (AD). Cerebral deposition of Aβ initiates deteriorating pathways which eventually can lead to AD. However, the exact mechanisms are not known.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA.
The topological magnetoelectric effect (TME) is a defining property of three-dimensional Z_{2} topological insulators that was predicted on theoretical grounds more than a decade ago, but has still not been directly measured. In this Letter we propose a strategy for direct measurement of the TME and discuss the precision of the effect in real devices with charge and spin disorder.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Cologne, Germany.
We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-body physics. In this context, SrCu_{2}(BO_{3})_{2} is a faithful realization of the Shastry-Sutherland model for ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of pressure. We perform inelastic neutron scattering measurements on SrCu_{2}(BO_{3})_{2} at 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!