Oligonucleotide-europium complex conjugate designed to cleave the 5' cap structure of the ICAM-1 transcript potentiates antisense activity in cells.

Nucleic Acids Res

ISIS Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, CA 92009, USA and Department of Chemistry, State University of New York, Buffalo, NY 14260-3000, USA.

Published: March 1999

The 5' cap structure of mRNA is a N7 methylated guanosine residue that is linked by a 5'-5' triphosphate linkage to the 5'-terminus of cellular and viral RNAs synthesized by RNA polymerase II. This unique structure facilitates several processes of mRNA metabolism, including splicing, nucleocytoplasmic transport,initiation of translation, and degradation. Previous research has demonstrated that the lanthanide macrocycle complex, Eu(THED)3+, effectively cleaves the 5' cap structure of mRNA in solution by nucleophilic attack of the triphosphate linkage via the metal-activated hydroxyethyl group of the THED ligand. This report shows that attachment of a Eu(THED)3+analog to the 3'-terminus of an antisense oligonucleotide, which targets the 5'-terminus of the intercellular adhesion molecule 1 mRNA, potentiates the inhibitory activity of the antisense oligonucleotide in cytokine-treatedendothelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148351PMC
http://dx.doi.org/10.1093/nar/27.6.1547DOI Listing

Publication Analysis

Top Keywords

cap structure
12
structure mrna
8
triphosphate linkage
8
antisense oligonucleotide
8
oligonucleotide-europium complex
4
complex conjugate
4
conjugate designed
4
designed cleave
4
cleave cap
4
structure
4

Similar Publications

Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations.

Acc Mater Res

January 2025

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.

Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.

View Article and Find Full Text PDF

enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability.

Comput Struct Biotechnol J

December 2024

Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.

The pore-forming enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g.

View Article and Find Full Text PDF

Unraveling the interaction of dissolved organic matter and microorganisms with internal phosphorus cycling in the floodplain lake ecosystem.

Environ Res

January 2025

College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:

Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.

View Article and Find Full Text PDF

Multi-group structure analysis and molecular docking of aptamers and small molecules: A case study of chloramphenicol.

Biochem Biophys Res Commun

January 2025

College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, Guangxi, China. Electronic address:

Aptamers, a kind of short nucleotide sequences with high specificity and affinity with targets, have attracted extensive attention in recent years. Molecular docking method (MDM) is the most common method to explore the binding mode and recognition mechanism of aptamers and small molecules, which generally use the target to dock with the highest scoring tertiary structural model of the aptamer, and the highest scoring result is used as the predicted model. However, this prediction results may miss out the true interaction pattern due to the fact that aptamers are not completely rigid and the natural aptamers conformations are not in a single state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!