Decreased GAP-43/B-50 phosphorylation in striatal synaptic plasma membranes after circling motor behavior during development.

Brain Res Mol Brain Res

Laboratorio de Biologia Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellon II, Ciudad Universitaria, 1428, Buenos Aires, Argentina.

Published: February 1999

We evaluated the in vitro phosphorylation of the presynaptic substrate of protein kinase C (PKC), GAP-43/B-50 and the PKC activity in the striatum of rats submitted to a circling training (CT) test during postnatal development. Motor activity at 30 days of age, but not at other ages, produced a unilateral reduction (-29.5%; p<0.001) in the level of GAP-43/B-50 endogenous phosphorylation in the contralateral striatum with respect to the ipsilateral side, while non-trained control animals did not show asymmetric differences. Compared to controls, the contralateral striatum of trained animals also showed a significant reduction (-29.3%; p<0. 001) in the incorporation of 32P-phosphate into GAP-43. This decreased in vitro GAP-43 phosphorylation was seen at 30 min, but not immediately after circling motor behavior. This contralateral change in GAP-43 phosphorylation correlated with the running speed developed by the animals [(r=0.9443, p=0.0046, n=6, relative to control group) and (r=0.8813, p=0.0203, n=6, with respect to the ipsilateral side of the exercised animals)]. On the contrary, GAP-43/B-50 immunoblots did not show changes in the amount of this phosphoprotein among the different experimental groups. Back phosphorylation assays, performed in the presence of bovine purified PKC, increased the level of GAP-43/B-50 phosphorylation in the striatum contralateral to the sense of turning [(+22%; p<0.05, with respect to ipsilateral side of the same trained group) and (+21%; p<0.05, relative to control group)]. Taken together, these results demonstrate that the activity developed in the CT test induces a reduction in the phosphorylation state of GAP-43/B-50 in the specific site for PKC. We conclude that general markers of activity-dependent neuronal plasticity are also altered in the same period that long-lasting changes in striatal neuroreceptors are triggered by circling motor behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0169-328x(98)00327-1DOI Listing

Publication Analysis

Top Keywords

decreased gap-43/b-50
4
gap-43/b-50 phosphorylation
4
phosphorylation striatal
4
striatal synaptic
4
synaptic plasma
4
plasma membranes
4
membranes circling
4
circling motor
4
motor behavior
4
behavior development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!