Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.59.1002 | DOI Listing |
Light Sci Appl
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Graduate Program in Intelligent Semiconductor Technology, Seoul 03722, Republic of Korea.
MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).
View Article and Find Full Text PDFSmall
January 2025
Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!