Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.58.128 | DOI Listing |
Micromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFACS Omega
December 2024
The Ultrafast Electron Imaging Lab, Department of Chemistry, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Canada.
Two-dimensional semiconducting gallium sulfide (GaS) has garnered notable interest for its distinct structural and optical properties, which position it as a promising candidate material for various applications ranging from photodetection and photovoltaics to nonlinear frequency conversion. In this work, we determined the out-of-plane longitudinal sound velocity, , via impulsive time-domain femtosecond broadband Brillouin scattering measurements performed on a single flake-like GaS crystal. We obtained a value (3140 ± 20) m/s, which yields an out-of-plane compressive elastic constant, = (38.
View Article and Find Full Text PDFBrillouin microscopy enables the assessment of the mechanical properties of biological tissues by mapping the Brillouin shift in three-dimensional (3D), all-optical, label-free, non-contact, and subcellular resolution. The virtually imaged phased array (VIPA) etalon is widely utilized for measuring Brillouin spectra owing to its superior light throughput, large angular dispersion, and rapid signal acquisition capabilities. The VIPA-based spectrometer plays a significant role in Brillouin microscopy, but it is highly sensitive to factors such as the tilt angle, beam radius, lens focal length, and so on.
View Article and Find Full Text PDFAPL Photonics
October 2024
Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, Maryland 20742, USA.
Brillouin spectroscopy has become an important tool for mapping the mechanical properties of biological samples. Recently, stimulated Brillouin scattering () measurements have emerged in this field as a promising technology for lower noise and higher speed measurements. However, further improvements are fundamentally limited by constraints on the optical power level that can be used in biological samples, which effectively caps the gain and signal-to-noise ratio () of biological measurements.
View Article and Find Full Text PDFBiomed Opt Express
October 2024
Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA.
We present the use of stimulated Brillouin scattering spectroscopy to achieve rapid measurements of cell biomechanics in a flow cytometer setup. Specifically, our stimulated Brillouin scattering flow cytometry can acquire at a rate of 200 Hz, with a spectral acquisition time of 5 ms, which marks a 10x improvement compared to previous demonstrations of spontaneous Brillouin scattering flow cytometry. We experimentally validate our stimulated Brillouin scattering flow cytometer by measuring cell populations of normal breast epithelial cells and metastatic breast epithelial cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!