Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.57.1574DOI Listing

Publication Analysis

Top Keywords

radiative lifetimes
4
lifetimes argon
4
argon molecules
4
molecules dependence
4
dependence internuclear
4
internuclear distance
4
radiative
1
argon
1
molecules
1
dependence
1

Similar Publications

Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

Disturbance-Triggered Instant Crystallization Activating Bioinspired Emissive Gels.

Angew Chem Int Ed Engl

January 2025

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, 1219 Zhongguan West Road, 315201, Ningbo, CHINA.

Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms.

View Article and Find Full Text PDF

The coupling between excitons in semiconductors or molecules and metal nanoparticles has been well-studied, primarily for nanoparticles in their ground electronic state. However, less attention has been given to exciton-nanoparticle interactions when the nanoparticle generates surface plasmons upon incident excitation. In this study, we explore the coupling and energy transfer dynamics between an exciton and the surface plasmon of a metal nanoparticle, forming a "plexciton".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!