Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.57.1562DOI Listing

Publication Analysis

Top Keywords

forbidden transitions
4
transitions atomic
4
atomic rydberg
4
rydberg states
4
states optical
4
optical collisions
4
forbidden
1
atomic
1
rydberg
1
states
1

Similar Publications

Room-Temperature, Strong Emission of Momentum-Forbidden Interlayer Excitons in Nanocavity-Coupled Twisted van der Waals Heterostructures.

Nano Lett

January 2025

Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong S.A.R., 999077, China.

The emission efficiency of interlayer excitons (IEs) in twisted 2D heterostructures has long suffered from momentum mismatch, limiting their applications in ultracompact excitonic devices. Here, we report strong room-temperature emission of momentum-forbidden IE in 30°-twisted MoS/WS heterobilayers. Utilizing a plasmonic nanocavity, the Purcell effect boosts the IE emission intensity in the cavity by over 2 orders of magnitude.

View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

Triplet excited states in organic semiconductors are usually optically dark and long-lived as they have a spin-forbidden transition to the singlet ground state and therefore hinder processes in light-harvesting applications. Also, triplets often cause damage to the system as they can sensitize the formation of reactive singlet oxygen. Despite these unfavorable characteristics, there exist mechanisms through which we can utilize triplet states, and that constitutes the scope of this review.

View Article and Find Full Text PDF

We give for the first time theoretical estimates of unknown rare electron-capture (EC) decay branchings of ^{44}Ti, ^{57}Co, and ^{139}Ce, relevant for searches of (exotic) dark-matter particles. The nuclear-structure calculations have been done exploiting the nuclear shell model with well-established Hamiltonians and an advanced theory of β decay. In the absence of experimental measurements of these rare branches, these estimates are of utmost importance for terrestrial searches of dark-matter particles, such as axionic dark matter in the form of axionlike particles, anapole dark matter, and dark photons in nuclear transitions.

View Article and Find Full Text PDF

Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@AlO) RTP composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!