Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.56.1179DOI Listing

Publication Analysis

Top Keywords

dephasing time
4
time disordered
4
disordered systems
4
dephasing
1
disordered
1
systems
1

Similar Publications

In this study, we used two-dimensional electronic spectroscopy to examine the early femtosecond dynamics of suspensions of colloidal gold nanorods with different aspect ratios. In all samples, the signal distribution in the 2D maps at this timescale shows a distinctive dispersive behavior, which can be explained by the interference between the exciting field and the field produced on the nanoparticle's surface by the collective motion of electrons when the plasmon is excited. Studying this interference effect, which is active only until the plasmon has been dephased, allows for a direct estimation of the dephasing time of the plasmon of an ensemble of colloidal particles.

View Article and Find Full Text PDF

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Understanding plasmon damping in gold nanorods (AuNRs) is crucial for optimizing their use in photochemical processes and biosensing. This study used dark-field microscopy and spectroscopy to explore plasmon damping in single AuNRs on graphene monolayers (AuNR@GL) with pyridine derivatives as adsorbates. The Au-graphene heterostructure caused a Fermi-level downshift, making graphene a dominant electron acceptor.

View Article and Find Full Text PDF

In this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!