Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.55.1254 | DOI Listing |
Nanoscale
January 2025
Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany.
The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully.
View Article and Find Full Text PDFUsing a full-wave theory to analyze the light beam scattering at sharp interfaces, we reexamine the anomalous spin-orbit interaction (SOI) around the Fresnel coefficient (FC) singularities. We evaluate the spin-dependent beam shifts near the singularity for three typical optical interfaces, comparing our results with existing ones. Existing theories neglect the contribution of the wave vector component near the FC singularities, potentially leading to erroneous results.
View Article and Find Full Text PDFNanophotonics
November 2023
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
Multidimensional manipulation of photonic spin Hall effect (PSHE) has attracted considerable interest due to its potential in a wide variety of spin-based applications. Plenty of research efforts have been devoted to transverse or longitudinal spin-dependent splitting; however, the splitting pattern that can self-rotate in a three-dimensional (3-D) space appears to be missing in literature. In this paper, we introduce a novel 3-D rotational PSHE, which can be realized and tuned using well-designed Pancharatnam-Berry phase metasurfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!