Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.54.2541 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Below a critical temperature [Formula: see text], superconductors transport electrical charge without dissipative energy losses. The application of a magnetic field [Formula: see text] generally acts to suppress [Formula: see text], up to some critical field strength at which [Formula: see text] 0 K. Here, we investigate magnetic field-induced superconductivity in high-quality specimens of the triplet superconductor candidate UTe[Formula: see text] in pulsed magnetic fields up to [Formula: see text] [Formula: see text] 70 T.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Cologne, Germany.
We report spin-polarized scanning tunneling microscopy measurements of an Anderson impurity system in MoS_{2} mirror-twin boundaries, where both the quantum-confined impurity state and the Kondo resonance resulting from the interaction with the substrate are accessible. Using a spin-polarized tip, we observe magnetic-field-induced changes in the peak heights of the Anderson impurity states as well as in the magnetic-field-split Kondo resonance. Quantitative comparison with numerical renormalization group calculations provides evidence of the notable spin polarization of the spin-resolved impurity spectral function under the influence of a magnetic field.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, Seybothstr. 2, Regensburg, 93053, Germany.
Hypothesis: The presence of a wetting ridge is crucial for many wetting phenomena on soft substrates. Conventional experimental observations of a wetting ridge require permanent presence of a droplet. The magnetic field-induced plasticity effect (FIPE) of soft magnetoative elastomers (MAEs) allows one to overcome this limitation.
View Article and Find Full Text PDFColossal magnetoresistance (CMR) is an exotic phenomenon that allows for the efficient magnetic control of electrical resistivity and has attracted significant attention in condensed matter due to its potential for memory and spintronic applications. Heusler alloys are the subject of considerable interest in this context due to the electronic properties that result from the nontrivial band topology. Here, the observation of CMR near room temperature is reported in the shape memory Heusler alloy NiMnIn, which is attributed to the combined effects of magnetic field-induced martensite twin variant reorientation (MFIR) and magnetic field-induced structural phase transformation (MFIPT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!